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Abstract. The article consists of two parts. The first part is devoted to general questions
that are related to uncertainty: causes and sources of uncertainties appearance, classification
of uncertainties in economic systems and approach to their assessment. In the second part the
concept of maximin, based on the principle of guaranteed result (Wald’s principle) is considered.
In this case, maximin is interpreted from viewpoint of two-level hierarchical game. On the basis of
the maximin concept, a guaranteed solution in outcomes for K-stage positional single-criterion
linear quadratic problem under uncertainty is formalized. An explicit form of the guaranteed
solution for this problem is found.
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Introduction

The genealogical tree of game theory has roots going deep into centuries1, powerful
trunks and a thick crown in which numerous modern works on game theory are
intertwined. A flowering and fruitful trunk  noncooperative games  was cultivated
in 1949 by twenty-one-year-old American mathematician John Nash. In his 27 pages-
long doctoral dissertation defended at Princeton University, Nash managed to separate
out a new face of competition and defined a strategy profile, which was later called
Nash equilibrium. After 45 years, J. Nash together with R. Selten and J. Harsanyi were
awarded the Nobel Prize in Economic Sciences for their pioneering analysis of equilibria
1“The need for making decisions under conflict is as old as humanity itself.” A quote from [1, p. 10].
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in the theory of non-cooperative games. However, the concept of Nash equilibrium has
a number of negative properties (internal instability, non-uniqueness, no equivalence, no
interchangeability, improvability) [2, Section 2.2.3] and, especially striking, selfishness that
permeates it. Really, following the concept of Nash equilibrium, each conflicting party
seeks to improve only his result, paying no attention to the interests of others. In [3], we
make an attempt to plant a new sprout, dictated by the altruism of the Golden Rule of
ethics-the aspiration to help others, sometimes forgetting about oneself. The life-giving
rain for this blossom to flourish is triggered by the following factors.

First, an integration of dynamic programming with the Lyapunov function method
was proposed by Academician N.N. Krasovskii. As a result, Lyapunov’s brilliant idea
to perform the stability analysis of the trajectories of a differential equation using
only the definiteness of Lyapunov functions was transformed into the ability to find
equilibrium strategies (in particular, Berge equilibrium) by the extreme properties of
Bellman–Krasovskii functions.

Second, optimal solutions of guaranteeing control problems are unstable with respect
to small disturbances and informational errors. In view of this fact, for regularization of
optimal solutions, Academician Krasovskii and his followers introduced and developed the
ideology of control procedures in which a real object is considered jointly with a similar
reference system–guide. The motion of a guide, conceivable or modeled on a computer,
acts as an ideal undisturbed process. Actually, this leads to a stabilization problem in a
new game-theoretic statement. In the late 1970s, the control concept of differential and
evolutionary systems based on a joint consideration of a real controlled object and an
auxiliary model system (guide) was further refined. A convenient tool on that way was a
uniform description of the dynamics of a model system suggested by Krasovskii. Guiding
control will be adopted to identify a class of differential positional games for which there
exists a Berge equilibrium in a corresponding differential positional game with separated
dynamics.

Third, due to the conceptual specifics of Berge equilibrium, the Germeier convolution
of the players’ payoff functions can be successfully applied not only in the static, but also
in the dynamic case of the Golden Rule of ethics.

And fourth, in mathematical models the presence of uncertain factors (uncertainties)
without any probabilistic characteristics, just known ranges (e.g., price jumps in a sales
market, disruption and (or) variations in the nomenclature of supplies, man-made changes,
etc.), and also multistage control (control at discrete time instants) were successfully taken
into account. (As a matter of fact, many problems of economic planning, engineering
and production control, military science, ecology, medicine are described by difference
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equations: in practice, information on the state of a process is acquired and the process
itself is controlled at discrete time instants).

1. Uncertainty and its types

1.1. Causes of uncertainty. In the study of any system, including economic ones, the
uncertainties affecting it have to be taken into account.

First, this is due to the peculiarities of the evolution of weakly structured systems-the
systems described by both qualitative and quantitative characteristics with dominating
qualitative, little-known or uncertain parameters.

Second, economic systems are controlled under insufficient knowledge of the state of an
external environment, often with large investments of resources. Moreover, a special class
of problems is to study economic systems that will operate at their limiting capability, in
order to obtain maximum economic or any other benefits.

Third, the need to consider uncertainty becomes vital if separate, often conflicting
subsystems are included into a system under study. In this case, an ambiguous solution
cannot be found, and some kind of compromise has to be reached accordingly.

Fourth, both in the theory and practice of control, the starting point is some
predetermined goals. In other words, for predicting the evolution of complex economic
systems, we have to assign plans that are in essence are rather proactive than corrective.

Fifth, deterministic methods are often used in formal modeling of a particular
economic system. With such an approach, certainty is introduced into those situations
where it does not actually exist. The inaccuracy of setting parameters during calculations
is neglected, or under certain assumptions, inaccurate parameters are replaced by expert
appraisals or average values. The resulting violations of equalities, balance relations, etc.
make it necessary to vary some parameters for precisely satisfying the given conditions
and obtaining an acceptable output. Such situations may occur due to insufficient
knowledge of objects and also because of a person or group of persons participating
in the control process. The peculiarity of such systems is that a significant part of the
information required for their mathematical description exists in the form of beliefs or
recommendations of experts.

1.2. Notion of uncertainty and classification of uncertainty in economic
systems. The incomplete and/or inaccurate information on the conditions of
implementing a chosen strategy is its inherent uncertainty. Uncertainty is caused by
embarras du choix. For an economic system, the concept of uncertainty characterizes
a situation in which there is no reliable information about the possible conditions
of the internal and external environment, completely or partially. For example, V.V.
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Cherkasov [4] considered uncertainty to be an incomplete or inaccurate representation
of the values of various parameters in the future, caused by various reasons and, above
all, incomplete or inaccurate information on the conditions of implementing decision,
including costs and results.

Information about the external factors of an economic system is never absolutely
sufficient, at least because it comes from the past and the present whereas a desired
behavior of the system is oriented towards the future. The smaller the completeness and
accuracy of information is and the longer the period for which the behavior of the system
is planned, the greater the uncertainty will be.

F. Knight [5] understood a situation of uncertainty as a lack of awareness and the
need to act based on opinion rather than knowledge.

Cherkasov interpreted uncertainty as the continuous variability of conditions, a fast
and flexible reconfiguration of production, the actions of competitors, market changes,
etc. He called uncertainty a most typical cause of risk in management.

There exist various approaches to classify the types of uncertainty. In the roughest
classification, two classes are distinguished, namely, good uncertainty (some statistical
or probabilistic characteristics for unknown factors are available) and bad uncertainty
(such characteristics cannot be obtained in principle). Note that both types of uncertainty
arising in real problems are taken into account using appropriate methods; for example,
see [1].

In [6], the following classification of uncertainties was suggested:

– by degree of uncertainty: probabilistic, linguistic, interval, and complete
uncertainty;

– by the nature of uncertainty: is parametric, structural, situational, and strategic
uncertainty;

– by the use of information acquired during control: eliminable and ineliminable
uncertainty.

V. S. Diev [7] presented more detailed classifications of uncertainties in modern
economic systems.

1.3. Sources of uncertainty in economic systems. Considering the sources of
uncertainty, we will distinguish three interconnected factors that cause uncertainty in
economic systems [8].

1. The complexity factor: as a rule, an economic system is a large system that cannot
be assigned a complete formal description, as well as a system with a variable
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structure, a nontrivial hierarchy and internal contradictions that is often controlled
using fuzzy criteria.

2. The human factor: human participation is an essential element that determines the
behavior of an economic system at different levels and also affects various aspects
of its operation. Moreover, the human factor manifests itself in the fact that many
concepts, characteristics and parameters of economic behavior are formulated in
natural language without an exact formal equivalent, which creates considerable
(sometimes insurmountable) difficulties in modeling.

3. The external environment factor: for any economic system, the influence of other
(external) systems has to be taken into account, which are often in conflict with
the former.

In view of the above factors causing uncertainty in economic systems, we will divide
the sources of uncertainty into three groups as follows.

1. Insufficient information about an economic system itself and about the processes
running within it. Consequently, full-edged conclusions or assumptions on the
evolution of an economic system and the final results cannot be made. In turn,
such a situation may be due to

– few data and other reasons that can be partially eliminated by organizing a
system of timely and complete information support (for example, in technical
systems, state monitoring is performed using information-measuring systems
with inevitable errors, and the number of monitored parameters is limited,
which do not prevent the appearance of some uncontrolled technical conditions,
possibly causing disasters; in economic systems, the set of possible outcomes is
well known, but the probability of a particular outcome can be unknown);

– imperfect tools used to study an economic system, modeling errors,
computational complexity, etc.

2. Accidental or deliberate counteraction of other economic agents. Such counteraction
may have the form of violated contractual obligations by suppliers, uncertain
demand for products, difficulties in marketing, or the behavior of local and regional
authorities, both official and criminal. In addition, there are uncertainties caused
by the competitive environment predetermining to a large extent the fate of a
particular enterprise (e.g., industrial espionage, the penetration of competitors into
trade secrets, and other effects on the internal affairs of a given enterprise).

3. The effect of random external factors that cannot be predicted due to their
unexpectedness. Also, the impossibility of predicting further evolution of processes
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due to the objectively inaccurate and ambiguous knowledge of the environment at
the modern stage of science development. In particular,

– the uncertainties caused by insufficient knowledge of nature (e.g., the exact
composition of supply of fish for a given fishing area in a given season is
unknown);

– the uncertainties of the natural phenomena themselves (meteorological
conditions affecting the average catch of fish, the mobility of supply of fish,
etc.).

Thus, uncertainty is associated either with an insufficient amount of necessary
information, or with the objective impossibility to acquire it and suggest reliable scenarios
for the evolution of economic processes. In any case, the degree of uncertainty is
determined by information, its amount, quality and timeliness.

2. Maximin in static case

This subsection is devoted to the single-criterion choice problem under uncertainty,
which is described by an ordered triplet Γ1 = 〈X, Y, f(x, y)〉.

Here the choice of a strategy (alternative) x from a set X ⊆ Rn is in charge of
a decision-maker (DM). In economic systems, the role of DMs belongs to the general
managers of industrial enterprises and business companies, the heads of states, sellers
(suppliers) and buyers (customers); in mechanical control systems, to the captains of
ships or aircrafts and the chiefs of control centers. In other words, a DM has right or
authority to make decisions, give instructions and control their implementation. Each
DM chooses from a given set of admissible actions, which will be called strategies. More
specifically, a strategy is comprehended as a rule that associates with each state of the
player’s awareness a certain action (behavior) from a set of admissible actions (behaviors)
given this awareness. Consider the case in which the DM’s admissible strategies are the
elements x of a well-defined set X. For a seller, a strategy is the price of one good;
for the general manager of an industrial enterprise, strategies are production output,
the amount of raw materials and equipment purchased, investments, innovations and
implementation of new technologies, wages reallocation, penalties, bonuses, and other
incentive and punishment mechanisms; for the captain of a ship, a strategy is own course
(rudder angle, the direction and magnitude of reactive force).

In the single-criterion choice problem under uncertainty Γ1, the DM’s goal is to choose
an appropriate strategy x ∈ X for maximizing the values of a scalar criterion f(x, y)

(outcomes). The DM has to consider a possible realization of any uncertainty y ∈ Y ⊆ Rm

within given limits. The value of f(x, y) may indicate profit or production output. If the
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criterion f1(x, y) is associated with total losses or production cost (to be minimized), then
the problem Γ1 should be solved with f(x, y) = −f1(x, y), since

max
x∈X

f(x, y) = −min
x∈X

f1(x, y).

Now, we proceed to uncertainty. The following situation seems common for almost
everybody: it is necessary to reach a place of employment from home. First of all, a person
in such conditions (further called passenger) has to decide which means of transportation
to use (subway, bus, tramcar, suburban electric train, etc.). Choosing any means of
transportation (strategy), passenger inevitably encounters incomplete and/or inaccurate
information: delays or breakdowns of vehicles, sudden changes of schedule, strikes of
drivers, weather fluctuations, crashes on routes, and other uncertainties. As was noted
by O. Holmes, The longing for certainty. . . is in every human mind. But certainty
is generally illusion.2 At best passenger knows the variation ranges of these factors,
without any probabilistic appraisals. Nevertheless, he/she has to make decision anyway!
As a matter of fact, the incomplete and/or inaccurate information about the conditions
under which his strategy is implemented makes its inherent uncertainty. In the problem
Γ1 denote by y a numerical value of uncertainty and by Y the set of all such values. We
assume that the set Y is a priori given and non-empty.

Hereinafter, in accordance with the subject matter of this article, the n-dimensional
vector x will be called the DM’s strategy in the problem Γ1 and f(x, y) will be called his
payoff function; the value of f(x, y) for a specific pair (x, y) ∈ X × Y will be called an
outcome for the strategy x ∈ X and uncertainty y ∈ Y .

Interestingly, Γ1 can be interpreted as a one-player game with nature.
First, we will introduce the concept of a guaranteed solution in outcomes of the

problem Γ1 and also its hierarchical interpretation using a two-level hierarchical game in
the case where the interval uncertainty y ∈ Y in Γ1 is replaced by the strategic uncertainty
y(x) : X → Y , y(·) ∈ Y X .

2.1. Formalization of guaranteed solution in outcomes. The first attempt to solve
the problem Γ1 was undertaken by Wald in 1939; see [9]. It was based on the maximin
principle, also known as the principle of guaranteed result. Let us formulate this principle
in the following way.

2Oliver Wendell Holmes, Jr., byname The Great Dissenter, (1841–1935), was a justice of the United States
Supreme Court, U.S. legal historian and philosopher who advocated judicial restraint.
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Definition 1. The guaranteed solution in payoffs (outcomes) of the problem Γ1 is a pair
(xg, f g) ∈ X ×R determined by the chain of equalities

f g = max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

f(xg, y). (1)

The strategy xg is called guaranteeing, and the value f g the guaranteed outcome.

The whole essence of this solution can be explained as follows: choosing and using
a strategy xg, the DM guarantees an outcome f g under any uncertainty y ∈ Y , since
f g = min

y∈Y
f(xg, y) implies

f(xg, y) ≥ f g ∀y ∈ Y.

The maximin (1) includes two successive operations, namely, first, the inner minimum,
which is intended to find an m-dimensional vector function y(·) : X → Y such that, for
each x ∈ X,

f(x, y(x)) = min
y∈Y

f(x, y),

and hence for each x ∈ X it follows that

f(x, y) ≥ f(x, y(x)) ∀y ∈ Y ; (2)

second, the outer maximum, which is intended to construct a strategy xg such that

max
x∈X

f(x, y(x)) = f(xg, y(xg)) = f g,

and hence

f g = f(xg, y(xg)) ≥ f(x, y(x)) ∀x ∈ X. (3)

In fact, formula (3) means that among all minima of f(x, y(x)) in (2) for different
x ∈ X, we choose the value f g maximizing f(x, y(x)) in x, which is implemented on the
strategy xg.

Remark 1. Recall that we consider a special class of uncertainties of the form Y X ,
which consists of the functions y(x) with the domain X and the codomain Y . (The
latter set is yielded by the inner minimum (2)). The actions of uncertainty are treated
as the behavior of another (dummy) player, which has no payoff function and directs
every effort to do as much harm to the DM as possible. (This is a strategic uncertainty
in the terminology of Yu. B. Germeier.) The dummy player can use any conceivable
information. In particular, he/she possibly knows the DM’s strategy. [12, p. 353]. In this
case, the so-called informational discrimination of the DM takes place [12, p. 353].
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The inner minimum in (2) leads to a parametric problem: for each x ∈ X, find an
m-dimensional vector function y(·) ∈ Y X such that

min
y∈Y

f(x, y) = f(x, y(x)). (4)

In this case, the following result should be taken into account.

Proposition 1. ([10, pp. 17–18]; [11, p. 54]) Let a scalar function f(x, y) be continuous
on X × Y and also let the sets X and Y be compact. Then

a) the function

min
y∈Y

f(x, y) = f(x, y(x)) (5)

is continuous on X, and the multivalued mapping

Y (x) = {y∗ ∈ Y |f(x, y∗) = min
y∈Y

f(x, y)} ∀x ∈ X,

i.e., Y (x) : X → Y ; has a Borel measurable selector y(x).
b) Moreover, if f(x, y) is strictly convex in y ∈ Y for each x ∈ X (i.e., for any

y(1), y(2) ∈ Y , y(1) ∕= y(2), and for each x ∈ X, the inequality

f(x,λy(1) + (1− λ)y(2)) < λf(x, y(1)) + (1− λ)f(x, y(2))

holds for any constants λ ∈ (0; 1)) and the set Y is convex, then the vector function
y(x) (5) is continuous on X.

Corollary 1. If a scalar function f(x, y) is continuous on X × Y and the sets X and Y

are compact, then the function

max
x∈X

f(x, y) (6)

is continuous on Y (because min
x∈X

[−f(x, y)] = −max
x∈X

f(x, y)).

The following concepts are well known in game theory and will be used in further
presentation: a) the strategy xg defined by (1) is called the maximin strategy, and f g is
called the maximin; by analogy, the uncertainty y0 from

f 0 = min
y∈Y

max
x∈X

f(x, y) = max
x∈X

f(x, y0)

is called the minimax uncertainty, and the value f 0 is called the minimax in the problem
Γ1; b) a pair (xg, y0) ∈ X × Y is a saddle point in the problem Γ1 if

max
x∈X

f(x, y0) = f(xg, y0) = min
y∈Y

f(xg, y), (7)
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or equivalently,

min
y∈Y

max
x∈X

f(x, y) = f(xg, y0) = max
x∈X

min
y∈Y

f(x, y),

where xg is the maximin strategy and y0 is the minimax uncertainty in the problem Γ1.

Proposition 2. Assume that in the problem Γ1 the sets X and Y are compact and the
function f(x, y) is continuous on X × Y . Then this problem has a guaranteed solution in
outcomes (payoffs).

Proof. By Proposition 1 the function min
y∈Y

f(x, y) is continuous in x ∈ X on the compact

set X. According to the Weierstrass extreme-value theorem, a continuous function on a
compact set X achieves maximum. □

2.2. Interpretation of maximin within two-level hierarchical game. Consider the
following two-player game with a fixed sequence of moves. Assume player 1 (DM) is given
priority in actions over player 2. Such a statement with the first move of player 1 describes
well, e.g., an interaction of conflicting parties in two-level hierarchical systems. We will
also accept the hypothesis that, whenever the outcome depends on the choice of player 2
only, he/she always minimizes the payoff function f(x, y). Player 1 is informed about this
behavior.

Then player 1 takes advantage of the first move, reporting his strategy x ∈ X to
player 2. Making the second move in this game, player 2 responds with a counter strategy
y(x) : X → Y that minimizes the function f(x, y(x)) for each x ∈ X. If for each x this
minimum is achieved at a unique point y(x), then the best (guaranteed) result of player
1 makes up

f g = max
x∈X

min
y∈Y

f(x, y) = max
x∈X

f(x, y(x)) = f(xg, y(xg)) = min
y∈Y

f(xg, y).

The sequence of moves of the DM and player 2 is illustrated in figure:
As a result, the DM prefers the maximin strategy xg, which yields the guaranteed

payoff

f g ≤ f(xg, y) ∀y ∈ Y.

Note that, for all x ∈ X, this payoff exceeds all other guaranteed payoffs:

min
y∈Y

f(x, y) ≤ f g ∀x ∈ X.
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3. Multistage maximin

For the difference statement of the linear-quadratic problem from section 2,
the guaranteed solution in outcomes (maximin) is constructed using an appropriate
modification of dynamic programming.

As the mathematical model, let us consider the ordered quadruple

〈Σ,A,Zu,J (U,Zu, x0)〉, (8)

which will be called the K-stage positional single-criterion linearquadratic problem under
uncertainty. We make several assumptions regarding (8) as follows.

– The controlled system Σ evolves over time in accordance with the vector linear
difference equation

x(k + 1) = Ax(k) + u+ z = f(k, x(k), u, z), x(0) = x0, (9)

with the following notations: k = 0, 1, . . . , K–1 as time instants, i.e., partition
points of an entire time interval [0, K] on which the controlled discrete process Σ

is evolving, x(k) ∈ Rn as the value of the state vector x at a time instant t = k;
u ∈ Rn as a DM’s control action; z ∈ Rn as an uncertain factor, (k, x(k)) as a pair
determining the position of (8) at a time instant k; (0, x0) as an initial position; A
as a constant matrix of dimensions n× n.

– A DM’s positional strategy U(k) at a time instant k is identified with a vector
function u(k, x) = P (k)x, where P (k) ∈ Rn×n is a constant matrix of dimensions
n × n. (This fact will be indicated by U(k) ÷ u(k, x) = P (k)x.) Hence, at a
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time instant k an appropriate strategy is assigned by choosing a specific matrix
P (k) ∈ Rn×n of dimensions n× n.

Thus, an ordered collection

U = (U(0), U(1), . . . , U(K − 1))÷

÷(u(0, x), u(1, x), . . . , u(K − 1, x)) = (P (0)x, P (1)x, . . . , P (K − 1)x)

is a DM’s strategy in the problem (8), the set of all such strategies U will be denoted
by A.

– The set of strategic positional uncertainties Zu(k) at a time instant k will be denoted
by Zu(k). It consists of

Zu(k)÷ z(k, x, u) = Q(k)x+R(k)u,

where Q(k), R(k) ∈ Rn×n are constant matrices of specified dimensions. The special
class of uncertainties that depend on the position (k, x) and also on the control
action u has been selected due to the reasons discussed in Remark 1. As a result,
the uncertainty in the problem (8) is described by the ordered collection

Zu = (Zu(0), Zu(1), . . . , Zu(K − 1))÷

÷(z(0, x, u), z(1, x, u), . . . , z(K − 1, x, u)) =

= (Q(0)x+R(0)u,Q(1)x+R(1)u, . . . , Q(K − 1)x+R(K − 1)u);

the set of such uncertainties is denoted by Zu.

The controlled process in the problem (8) has the following dynamics over time.
Assume that the DM has chosen and adopted a specific strategy U ∈ A:

U ÷ (u(0, x), u(1, x), . . . , u(K − 1, x)) = (P (0)x, P (1)x, . . . , P (K − 1)x).

Also, let some uncertainty Zu ∈ Zu have been realized in Σ regardless of this choice:

Zu = (Zu(0), . . . , Zu(K − 1))÷ (z(0, x, u), . . . , z(K − 1, x, u)) =

= (Q(0)x+R(0)u, . . . , Q(K − 1)x+R(K − 1)u).

Substituting the above strategy U and uncertainty Zu into (9), we obtain

x(1) = Ax0 + u(0, x0) + z(0, x0, u(0, x0)) =

= [A+ P (0) +Q(0) +R(0)P (0)]x0 =

= f(0, x0, u(0, x0), z(0, x0, u(0, x0))),

x(2) = [A+ P (1) +Q(1) +R(1)P (1)]x(1) =

“Taurida Journal of Computer Science Theory and Mathematics”, 2021, 1
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= f(1, x(1), u(1, x(1)), z(1, x(1), u(1, x(1)))),

...

x(K) = [A+ P (K − 1) +Q(K − 1) +R(K − 1)P (K − 1)]x(K − 1) =

= f(K − 1, x(K − 1), u(K − 1, x(K − 1)),

z(K − 1, x(K − 1), u(K − 1, x(K − 1)))).

This gives three sequences,

{x(k)}Kk=0,

{u[k] = P (k)x(k)}Kk=0,

{z[k] = Q(k)x(k) +R(k)P (k)x(k)}Kk=0,

which form the criterion (also called the payoff or utility function of the DM)

J (U,Zu, x0) = x′(K)Cx(K)+

+
K−1

k=0

(u′[k]D(k)u[k] + z′[k]L(k)z[k]) = (10)

= Φ(x(K)) +
K−1

k=0

F (k, x(k, u[k], z[k])).

A value of the function (10) is called an outcome or DM’s payoff. In formula (10), all
matrices C, D(k), L(k), P (k), Q(k) and R(k) of dimensions n× n are constant, and the
matrices C, D(k) and L(k) are symmetric. Recall that the prime indicates transposition,
for a symmetric matrix M ∈ Rn×n, the expression M > 0 (< 0) shows that the
quadratic form u′Mu is positive (negative, respectively) definite; En is an identity matrix
of dimensions n× n; 0n is a zero n-dimensional vector; finally, Idem{u → ug} means the
bracketed expression with u replaced by ug. In addition, detB denotes the determinant of
a square matrix B.

At conceptual level, choosing his strategy U ∈ A, the DM seeks to maximize
the outcome J (U,Zu, x0) in the problem (8) under any realization of the uncertainty
Zu ∈ Zu. Definition 1 naturally leads to the following concept.

A pair (U g,J g[x0]) ∈ A × R will be called the guaranteed solution in outcomes of
the problem (8) if there exists an uncertainty Zg

u ∈ Zu such that

J g[x0] = max
U∈A

min
Zu∈Zu

J (U,Zu, x0) =

= min
Zu∈Zu

J (U g, Zu, x0) = J (U g, Zg
u, x0). (11)
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In this case, U g will be called the guaranteeing strategy, and J g[x0] the guaranteed
outcome.

Remark 2. The concept of guaranteed solution in outcomes suggests the DM to use the
strategy U g ∈ A in the problem (8) on two grounds as follows. First, the equality

min
Zu∈Zu

J (U g, Zu, x0) = J g[x0]

implies that J (U g, Zu, x0) ≥ J g[x0] under any uncertainty realization of the uncertainty
Zu ∈ Zu. In other words, with this strategy the outcome will be not smaller than the
guaranteed outcome J g[x0] (the lower bound on J (U g, Zu, x0) over all Zu ∈ Zu).

Second, for each strategy U ∈ A the DM will obtain the guaranteed outcome
min

Zu∈Zu

J (U,Zu, x0), which is not greater than J g[x0].

Now, we introduce sufficient conditions for the existence of the multistage
maximin (11) that are based on dynamic programming. At each time instant
k = K,K–1, K–2, . . . , 1, 0, we will use the Bellman function

V (k)(x) = x′Θ(k)x,

with a symmetric matrix Θ(k) ∈ Rn×n as well as scalar functions

W (k, x, u, z, V (k+1)(Ax+ u+ z)) =

= W (k, x, u, z, (x′A′ + u′ + z′)Θ(k + 1)(Ax+ u+ z)) =

= W [k, x, u, z,Θ(k + 1)] = u′D(k)u+ z′L(k)z+ (12)

+(x′A′ + u′ + z′)Θ(k + 1)(Ax+ u+ z)

(k = K − 1, K − 2, . . . , 1, 0).

Proposition 3. Let {V (k)(x) = x′Θ(k)x}K–1
k=0 , {u(k, x,Θ(k+1)) = P (k,Θ(k+1))x}}K–1

k=0

and {z(k, x, u,Θ(k + 1)) = Q(k,Θ(k + 1))x + R(k,Θ(k + 1))u}K–1
k=0 be three sequences,

the first composed of scalar functions and the last two of n-dimensional vector functions,
that satisfy the following assumptions:

V (K)(x) = x′Cx ∀x ∈ Rn, (13)

for all x, u ∈ Rn, Θ(k + 1) ∈ Rn×n, and k = K − 1, . . . , 1, 0,

min
z

W [k, x, u, z,Θ(k + 1)] =

= W [k, x, u, z(k, x, u,Θ(k + 1)),Θ(k + 1)]; (14)
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for each x ∈ Rn, Θ(k + 1) ∈ Rn×n and k = K − 1, . . . , 1, 0,

max
u

W [k, x, u, z(k, x, u,Θ(k + 1)),Θ(k + 1)] =

= W [k, x, u(k, x,Θ(k + 1)), (15)

z(k, x, u(k, x,Θ(k + 1)),Θ(k + 1)),Θ(k + 1)];

for any x ∈ Rn and k = K − 1, K − 2, . . . , 1, 0,

V (k)(x) = x′Θ(k)x = W [k, x, u(k, x,Θ(k + 1)),

z(k, x, u(k, x,Θ(k + 1)),Θ(k + 1)),Θ(k + 1)]. (16)

Then for any initial state vector x0 ∈ Rn, the guaranteed solution in outcomes
(U g,J g[x0]) of the problem (8) has the following form:
the guaranteed strategy is given by

U g ÷ (ug[0, x], ug[1, x], . . . , ug[K − 1, x]),

where

ug[k, x] = u(k, x,Θ(k + 1)) (k = 0, 1, . . . , K − 1),

and the guaranteed outcome is given by

J g[x0] = V (0)(x0) = x′
0Θ(0)x0.

(The notations are the same as in (12). Formula (16) is used to successively find the
matrices Θ(k) (k = K − 1, . . . , 1, 0).)

Proof. This result can be established by a standard procedure, for example, see [13,
pp. 366–367]. □

Remark 3. For each time instant (k = 0, 1, . . . , K–1), consider the auxiliary problem

Γ(k) = 〈A,Z ,W [k, x, u, z,Θ(k + 1)]〉,

where A is the set of strategies U = (U(0), U(1), . . . , U(K − 1)) ÷ (u(0, x), u(1, x), . . .

. . . , u(K − 1, x)) of the form u(k, x) = P (k)x; Z denotes the set of uncertainties
z(k, x, u,Θ(k + 1)) = Q(k)x + R(k)u; the criterion W [k, x, u, z,Θ(k + 1)] is given by
(12). Then merging the requirements (14) and (15) actually means the equalities

max
u∈A

min
z∈Z

W [k, x, u, z,Θ(k + 1)] =

= min
z∈Z

W [k, x, u(k, x,Θ(k + 1)), z,Θ(k + 1)] = W [k, x, u(k, x,Θ(k + 1)), (17)

z(k, x, u(k, x,Θ(k + 1)),Θ(k + 1)),Θ(k + 1)] = W g[k, x,Θ(k + 1)].
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In other words, at each time instant k = K − 1, K − 2, . . . , 1, 0 the DM implements the
maximin (17) in the auxiliary problem Γ(k). Consequently, according to Proposition 3,
implementing the local maximin at each time instant k = K − 1, K − 2, . . . , 1, 0, the DM
actually arrives at the global maximin (11) in the problem (8).

Taking advantage of Proposition 3, we will find an explicit form of the guaranteed
solution in outcomes of the problem (8). Before doing it, let us present three auxiliary
results. Recall that if a quadratic form z′Gz is positive (negative) definite and
G = G′ ∈ Rn×n, then all n roots λi of the characteristic equation det[G–λEn] = 0

are real and λi > 0 (λi < 0, respectively).

Lemma 1. Consider symmetric matrices L(k−1) > 0 and Θ(k) < 0 of dimensions n×n.
The inequality

L(k − 1) +Θ(k) > 0

holds if λ(k−1) > µ(k), where λ(k−1) and −µ(k) are the least roots of the characteristic
equations det[L(k − 1)− λEn] = 0 and det[Θ(k)− µEn] = 0, respectively.

Proof. Let λ(k − 1) and −µ(k) be the least roots of the corresponding characteristic
equations. In this case,

z′L(k − 1)z ≥ λ(k − 1)z′z, z′Θ(k)z ≥ −µ(k)z′z ∀z ∈ Rn,

and hence

z′[L(k − 1) +Θ(k)]z ≥ [λ(k − 1)− µ(k)]z′z > 0 ∀z ∈ Rn \ {0n}.

□

Lemma 2. Consider symmetric constant matrices D(k), C, L(k − 1), and Θ(k) of
dimensions n× n such that

D(k) < 0, C < 0, L(k − 1) > 0, L(k − 1) +Θ(k) > 0. (18)

Then the matrices

M(Θ(k)) = Θ(k){Θ−1(k)− [L(k − 1) +Θ(k)]−1}Θ(k),

Θ(k − 1) = A′M(Θ(k))××{M−1(Θ(k))− [D(k) +M(Θ(k))]−1}M(Θ(k))A

are also symmetric, M(Θ(k)) < 0, and Θ(k − 1) < 0 if

detA ∕= 0. (19)
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Proof. The symmetry of the matrices M(Θ(k)) and Θ(k − 1) follows from the properties
(AB)′ = B′A′, [A−1]′ = [A′]−1, A′′ = A and the two easily checked equalities
M(Θ(k)) = M ′(Θ(k)) and Θ(k − 1) = Θ′(k − 1).

The negative definiteness of M(Θ(k)) and Θ(k − 1) is established by the chain of
implications

Θ(k) < 0 ⇒ detΘ(k) ∕= 0 ⇒ ∃Θ−1(k) ∧Θ−1(k) < 0,

[L(k − 1) +Θ(k)] > 0 ⇒ [L(k − 1) +Θ(k)]−1 > 0 ⇒ −[L(k − 1) +Θ(k)]−1 < 0,

Θ−1(k) < 0 ∧ −[L(k − 1) +Θ(k)]−1 < 0 ⇒

⇒ Θ−1(k)− [L(k − 1) +Θ(k)]−1 < 0 = {detΘ(k) ∕= 0} ⇒

⇒ M(Θ(k)) = Θ(k){Θ−1(k)− [L(k − 1) +Θ(k)]−1}Θ(k) < 0;

D(k) < 0 ∧M(Θ(k)) < 0 ⇒ [D(k) +M(Θ(k))]−M(Θ(k)) = D(k) < 0 =

= { [14, p. 89]} ⇒ M−1(Θ(k))− [D(k) +M(Θ(k))]−1 < 0;

detA ∕= 0 ∧M(Θ(k)) < 0 ⇒ det[AM(Θ(k))] ∕= 0,

det[AM(Θ(k))] ∕= 0 ∧M−1(Θ(k))− [D(k) +M(Θ(k))]−1 < 0 ⇒ Θ(k − 1) =

= A′M(Θ(k)){M−1(Θ(k))− [D(k) +M(Θ(k))]−1}M(Θ(k))A < 0.

□

Corollary 2. Under conditions (18) and (19) (see Lemma 2), we have the implication

[Θ(k) < 0] ⇒ [Θ(k − 1) < 0]. (20)

In fact, the validity of (20) has be demonstrated by Lemma 2.

Remark 4. The concept of guaranteed solution in outcomes itself directly leads to the
following design method of the guaranteed solution of the problem (8) using Proposition
3, see the stages described below. The Bellman functions V (k)(x) have to be constructed
as quadratic forms V (k)(x) = x′Θ(k)x, with symmetric matrices Θ(k) ∈ Rn×n.

Stage 1 (k = K). From (9), due to

V (K)(x) = x′Θ(K)x = x′Cx ∀x ∈ Rn,

find the matrix Θ(K) = C.
Stage 2 (k = K–1). The function W [K − 1, x, u, z,Θ(K)] (12) takes the form

W [K − 1, x, u, z,Θ(K)] = u′D(K − 1)u+ z′L(K − 1)z+

+(x′A′ + u′ + z′)Θ(K)(Ax+ u+ z). (21)
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Checking the condition L(K−1)+C = L(K−1)+Θ(K) > 0, construct z(K−1, x, u,Θ(K))

in accordance with

min
z

W [K − 1, x, u, z,Θ(K)] =

= W [K − 1, x, u, z(K − 1, x, u,Θ(K)),Θ(K)] ∀x, u ∈ Rn. (22)

Next, calculate the vector function u(K − 1, x,Θ(k)) in accordance with

max
u

W [K − 1, x, u, z(K − 1, x, u,Θ(K)),Θ(K)] =

= W [K − 1, x, u(K − 1, x,Θ(K)),

z(K − 1, x, u(K − 1, x,Θ(K)),Θ(K)),Θ(K)] == W [K − 1, x] ∀x ∈ Rn,

and find the constant matrix Θ(K − 1) of dimensions n× n from the identity

x′Θ(K − 1)x = W [K − 1, x] ∀x ∈ Rn. (23)

Thus, Stage 2 yields the n-dimensional vector function

ug[K − 1, x] = u(K − 1, x,Θ(K) = C) = P (K − 1,Θ(K))x

and also the symmetric matrix Θ(K − 1) ∈ Rn×n.
Then, repeating all operations of Stage 2 for k = K–2, obtain the vector function

ug[K − 2, x] = u(K − 2, x,Θ(K − 1)) = P (K − 2,Θ(K − 1))x and the matrix
Θ(K − 2) ∈ Rn×n of dimensions n× n. And so on, for k = K − 3, . . . , 1.

Finally, repeat the operations of Stage 2 for k = 0, replacing Θ(K) by Θ(1). For k = 0,

W [0, x, u, z,Θ(1)] = u′D(0)u+ z′L(0)z+

+(x′A′ + u′ + z′)Θ(1)(Ax+ u+ z).

Check the requirement L(0) + Θ(1) > 0 and construct the vector function
z(0, x, u,Θ(1)) in accordance with

min
z

W [0, x, u, z,Θ(1)] =

= W [0, x, u, z(0, x, u,Θ(1)),Θ(1)] ∀x, u ∈ Rn.

Next, find the n-dimensional vector function u(0, x,Θ(1)) in accordance with

max
u

W [0, x, u, z(0, x, u,Θ(1)),Θ(1)] =

= W [0, x, u(0, x,Θ(1)),

z(0, x, u(0, x,Θ(1)),Θ(1)),Θ(1)] = W [0, x] ∀x ∈ Rn,
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and also the matrix Θ(0) of dimensions n× n from the identity

x′Θ(0)x = W [0, x] ∀x ∈ Rn.

As a result, the vector function ug[0, x] = u(0, x,Θ(1)) = P (0,Θ(1))x and the constant
matrix Θ(0) of dimensions n× n are obtained.

Thus, for any initial state vector x(0) = x0 ∕= 0n in (9), the guaranteed solution in
outcomes (U g,J g[x0]) of the problem (8) has the explicit form

U g ÷ (ug[0, x], ug[1, x], . . . , ug[K − 1, x]),

ug[k, x] = u(k, x,Θ(k + 1)) = P (k,Θ(k + 1))x (k = 0, 1, . . . , K − 1), (24)

J g[x0] = x′
0Θ(0)x0.

In view of the stages described in Remark 4, we may formulate the following result.

Proposition 4. Consider the problem (8) with

C < 0, detA ∕= 0, D(k) < 0, L(k) > 0 (k = 0, 1, . . . , K − 1) (25)

and let the sequence of matrices {Θ(k)}Kk=0 constructed by the recursive formulas

Θ(K) = C,

M(Θ(K)) = C[C−1 − (L(K − 1) + C)−1]C,

Θ(K − 1) = A′M(Θ(K)){M−1(Θ(K))–

−[D(K − 1) +M(Θ(K))]−1}M(Θ(K))A,

M(Θ(K − 1)) = Θ(K − 1)[Θ−1(K − 1)−

−(L(K − 2) +Θ(K − 1))−1]Θ(K − 1),

Θ(K − 2) = A′M(Θ(K − 1)){M−1(Θ(K − 1))–

−[D(K − 2) +M(Θ(K − 1))]−1}M(Θ(K − 1))A,

...

Θ(k) = A′M(Θ(k + 1)){M−1(Θ(k + 1))–

−[D(k) +M(Θ(k + 1))]−1}M(Θ(k + 1))A,

M(Θ(k)) = Θ(k)[Θ−1(k)− (L(k − 1) +Θ(k))−1]Θ(k),

Θ(k − 1) = A′M(Θ(k)){M−1(Θ(k))− [D(K − 1) +M(Θ(k))]−1}M(Θ(k))A,

...

Θ(1) = A′M(Θ(2)){M−1(Θ(2))− [D(1) +M(Θ(2))]−1}M(Θ(2))A,
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M(Θ(1)) = Θ(1)[Θ−1(1)− (L(0) +Θ(1))−1]Θ(1),

Θ(0) = A′M(Θ(1)){M−1(Θ(1))− [D(0) +M(Θ(1))]−1}M(Θ(1))A (26)

be such that

L(k − 1) +Θ(k) > 0 (k = K,K − 1, . . . , 1). (27)

Then for any initial state vector x0 ∈ Rn in equation (9), the guaranteed solution in
outcomes (U g,J g[x0]) of the problem (8) has the form

U g ÷ (−[D(0) +M(Θ(1))]−1M(Θ(1))Ax, . . .

. . . ,−[D(K − 1) +M(Θ(K))]−1M(Θ(K))Ax), (28)

J g[x0]) = x′
0Θ(0)x0.

Proof. In accordance with Stage 1, the matrix Θ(K) is Θ(K) = C < 0 and the Bellman
function at the time instant k = K is given by

V (K)(x) = x′Θ(K)x = x′Cx.

Following the recommendations of Stage 2, we construct the scalar function (12) for
k = K–1

W [K − 1, x, u, z,Θ(K)] = u′D(K − 1)u+ z′L(K − 1)z+

+(x′A′ + u′ + z′)Θ(K)(Ax+ u+ z), (29)

and find z(K − 1, x, u,Θ(K)) from (14), i.e.,

min
z

W [K − 1, x, u, z,Θ(K)] = Idem[z → z(K − 1, x, u,Θ(K))].

Due to the above explicit form of W [K − 1, x, u, z,Θ(K)], the vector function
z(K − 1, x, u,Θ(K)) simultaneously minimizes the function

ϕ1(K − 1, x, u, z) = z′L(K − 1)z+

+z′Θ(K)z + 2z′Θ(K)(Ax+ u) ∀x, u ∈ Rn.

Here, the sufficient conditions can be written as

gradzϕ1(K − 1, x, u, z)|z(K−1,x,u,Θ(K)) =

=
∂ϕ1(K − 1, x, u, z)

∂z
|z(K−1,x,u,Θ(K)) =

= 2[L(K − 1) +Θ(K)]z(K − 1, x, u,Θ(K)) + 2Θ(K)(Ax+ u) = 0n ∀x, u ∈ Rn,

(30)
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and the Hessian has the form
∂2ϕ1(K − 1, x, u, z)

∂z2
= 2[L(K − 1) +Θ(K)] > 0.

The last inequality is immediate from (27) with k = K. On the other hand, condition
(30) implies, first,

z(K − 1, x, u,Θ(K)) = −[L(K − 1) +Θ(K)]−1Θ(K)(Ax+ u), (31)

and second,

z′(K − 1, x, u,Θ(K))[L(K − 1) +Θ(K)]z(K − 1, x, u,Θ(K))+

+2z′(K − 1, x, u,Θ(K))Θ(K)(Ax+ u) =

= −z′(K − 1, x, u,Θ(K))[L(K − 1) +Θ(K)]z(K − 1, x, u,Θ(K)).

Using this relation, equality (31) and the first row of formula (2) with k = K, we
obtain the following chain of equalities from (29) with z = z(K − 1, x, u,Θ(K)):

W [K − 1, x, u, z(K − 1, x, u,Θ(K)),Θ(K)] =

= u′D(K − 1)u+ (x′A′ + u′)Θ(K)(Ax+ u)–

−z′(K − 1, x, u,Θ(K))[L(K − 1) +Θ(K)]z(K − 1, x, u,Θ(K)) =

= u′D(K − 1)u+ (x′A′ + u′)Θ(K)Θ−1(K)Θ(K)(Ax+ u)–

−(x′A′ + u′)Θ(K)[L(K − 1) +Θ(K)]−1Θ(K)(Ax+ u) =

= u′D(K − 1)u+ (x′A′ + u′)Θ(K){Θ−1(K)–

−[L(K − 1) +Θ(K)]−1}Θ(K)(Ax+ u) =

= u′D(K − 1)u+ (x′A′ + u′)M(Θ(K))(Ax+ u) =

= u′[D(K − 1) +M(Θ(K))]u+

+2u′M(Θ(K))(Ax+ u) + x′A′M(Θ(K))Ax.

Now, we get back to (4), taking into account the formula

W [K − 1, x, u, z(K − 1, x, u,Θ(K)),Θ(K)] =

= u′D(K − 1)u+ (x′A′ + u′)M(Θ(K))(Ax+ u) =

= u′[D(K − 1) +M(Θ(K))]u+

+2u′M(Θ(K))(Ax+ u) + x′A′M(Θ(K))Ax.

If the maximum in (4) is achieved at u = u(K − 1, x,Θ(K)), then

max
u

ϕ2(K − 1, x, u) =
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= max
u

{u′[D(K − 1) +M(Θ(K))]u+ 2u′M(Θ(K))Ax} ∀x ∈ Rn (32)

is also implemented at the same u = u(K − 1, x,Θ(K)). The sufficient conditions of this
maximum can be written as

∂ϕ2(K − 1, x, u)

∂u
|u(K−1,x,Θ(K)) =

= 2[D(K − 1) +M(Θ(K))]u(K − 1, x,Θ(K))+

+2M(Θ(K))Ax = 0n ∀x ∈ Rn, (33)

∂2ϕ1(K − 1, x, u)

∂u2
= 2[D(K − 1) +M(Θ(K))] < 0.

The second requirement is satisfied due to D(K − 1) < 0 (see (24) with k = K–1)
and M(Θ(K)) < 0. In addition, the matrix M(Θ(K)) has symmetry by Lemma 2 with
k = K.

From (33) it follows that, first,

u(K − 1, x,Θ(K)) = −[D(K − 1) +M(Θ(K))]−1M(Θ(K))Ax; (34)

second,

u′(K − 1, x,Θ(K))[D(K − 1) +M(Θ(K))]u(K − 1, x,Θ(K))+

+2u′(K − 1, x,Θ(K))M(Θ(K))Ax = −u′(K − 1, x,Θ(K))[D(K − 1)+

+M(Θ(K))]u(K − 1, x,Θ(K)) ∀x ∈ Rn.

In view of this identity, (34), and the second row of formula (2), we obtain

W [K − 1, x] = W [K − 1, x, u(K − 1, x,Θ(K)),

z(K − 1, x, u(K − 1, x,Θ(K)),Θ(K)),Θ(K)] =

= −u′(K − 1, x,Θ(K))[D(K − 1)+

+M(Θ(K))]u(K − 1, x,Θ(K))+

+x′A′M(Θ(K))M−1(Θ(K))M(Θ(K))Ax = (35)

= x′A′M(Θ(K)){M−1(Θ(K))–

−[D(K − 1) +M(Θ(K))]−1}M(Θ(K))Ax =

= x′Θ(K − 1)x = V (K−1)(x).

Moreover, by Corollary 2,

[Θ(K)(= C) < 0] ⇒ [Θ(K − 1) < 0],

and by Lemma 2 the matrix Θ(K − 1) is symmetric.
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The same considerations can be applied to the case k = K–2 by simply replacing the
matrix Θ(K) with Θ(K− 1) and the number K–1 with K–2 in all formulas starting from
(29). Following this approach, we establish the analogs of (34) and (35),

u(K − 2, x,Θ(K − 1)) = −[D(K − 2) +M(Θ(K − 1))]−1M(Θ(K − 1))Ax,

and

V (K−2)(x) = x′Θ(K − 2)x,

respectively, where the nonnegative definite matrices M(Θ(K − 1)) and Θ(K − 2) are
given by (19) with k = K–1.

Similar operations should be performed for k = K − 3, . . . , 1, 0. By mathematical
induction on k, for each k = 0, 1, . . . , K–1 we get

u(k, x,Θ(k + 1)) = −[D(k) +M(Θ(k + 1))]−1M(Θ(k + 1))Ax, (36)

V (k)(x) = x′Θ(k)x.

Finally, the end of Remark 4 in combination with the first and second rows of formula
(36) with k = 0, 1, . . . , K − 1 and k = 0, respectively, allows us to prove (25). □

Remark 5. For obtaining the guaranteed solution in outcomes of the linear-quadratic
discrete single-criterion problem (8)–(11) using Proposition 4, we have to first, check the
constraints (25), second, for k = K,K − 1, . . ., construct the two sequences

{Θ(K),Θ(K − 1), . . . ,Θ(1),Θ(0)},

and

{M(Θ(K)),M(Θ(K − 1)), . . . ,M(Θ(1)),M(Θ(0))}

by the recursive relations (26); third, check whether the requirements (27) are satisfied;
if so, analytically design the guaranteed solution in outcomes (U g,J g[x0]) by formulas
(28).

Conclusion

The article consists of two parts. The first part is devoted to general questions that
are related to uncertainty: causes and sources of uncertainties appearance, classification
of uncertainties in economic systems and approach to their assessment. In the second part
the concept of maximin, based on the principle of guaranteed result (Wald’s principle) is
considered. In this case, maximin is interpreted from viewpoint of two-level hierarchical
game. On the basis of the maximin concept, a guaranteed solution in outcomes for K-
stage positional single-criterion linear quadratic problem under uncertainty is formalized.

Таврический вестник информатики и математики, 1 (50)’ 2021



30 V. I. Zhukovskiy, L. V. Smirnova

An explicit form of the guaranteed solution for this problem is found.The article opens
the theoretical direction of the research of dynamic multi-stage positional games under
uncertainty.
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