УДК 159.922.25:504.38

АНАЛИЗ КЛИМАТА И УЧЕТ ЕГО ОСОБЕННОСТЕЙ ПРИ ПРОЕКТИРОВАНИИ ЗДАНИЙ В Г.СИМФЕРОПОЛЬ

Казьмина 1 А.И., Родин 2 С.В., Богуцкий 3 Ю.Г., Богуцкая 4 А.Ю.

ФГАОУ ВО «Крымский федеральный университет им В.И. Вернадского», Институт «Академия строительства и Архитектуры», г. Симферополь, ул. Киевская, 181

E-mail: ¹kazmina.albina@yandex.ru . ²sv_rodin@mail.ru ; ³bogutskiyyg@mail.ru ; ⁴abogutskaya2004@mail.ru

Аннотация. Целью работы является разработка типологических рекомендаций к проектируемым зданиям в г.Симферополь на основе архитектурного анализа природно-климатических условий. Исследование требует детального изучения температурного режима, температурно-влажностного режима, температурно-ветрового режима, солнечной радиации и биоклиматической характеристики района строительства.

Предмет исследования: теплоощущения человека - на них оказывают влияние взаимодействие таких факторов как температура, солнечная радиация, влажность воздуха и скорость его перемещения. В зависимости от комбинации этих факторов теплоощущения человека могут меняться.

Материалы и методы: для решения поставленной цели были проанализированы значения: среднемесячной температуры наружного воздуха, относительной влажности, скорости и направления ветра, солнечной радиации. Для оценки влияния климата на организм человека рассчитывали эквивалентно-эффективную температуру и нормальную эквивалентную температуру. При построении графиков использовалось программное обеспечение AutoCAD и Microsoft Excel.

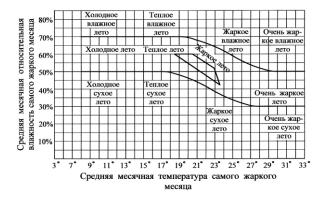
Результаты: проведенные исследования позволили определить границы зон комфорта, влияние климата г. Симферополь на организм человека.

Выводы: результаты анализа природно-климатических факторов позволяют определить типологические требования по выбору архитектурных решений: архитектурно-планировочные, конструктивные и инженерно-технические средства регулирования микроклимата в застройке и зданиях для г.Симферополь с учетом его климата.

Ключевые слова: климат, архитектурный анализ, типология, теплоощущения, биоклиматические показатели.

ВВЕДЕНИЕ

Характеристика и анализ климатических условий позволяет целенаправленно принимать архитектурно-строительные решения. Важной частью проектных решений является архитектурный анализ климата, который предусматривает характеристику климатических условий на основе санитарно-гигиенических и требований эколо¬гических к архитектурнопланировочным решениям, позволяет формировать специальные требования о типах застройки, ориентации помещений, объемно-планировочным компановкам и др. К таким характеристикам относится, например, продолжительность типов погоды за год (в месяцах) по конкретному городу, индекс климатического района (биоклиматической среднемесячная температура, зоны), относительная влажность воздуха, солнечная радиация, скорость перемещения воздуха и др. Метод климатического анализа проводится для предотвращения нежелательных процессов при строительстве И эксплуатации зданий сооружений, что позволяет обеспечить комфорт и безопасность человека в среде обитания. Целью разработка типологических является работы рекомендаций на основе анализа и систематизация характеристик климатических условий для города Симферополь - столицы Республики Крым, в котором ведется массовое строительство жилых и общественных зданий и сооружений.


АНАЛИЗ ПУБЛИКАЦИЙ

Для изучения данного вопроса были проанализированы материалы отечественных и зарубежных публикаций. В работах Лицкевича В.К. и др. [5], Мягкова М.С. и др. [6] рассматривается влияние природных и климатических факторов на организм человека, акцент в исследованиях сделан изменении физиологических терморегуляции и восприятия тепла в различных климатических условиях. В работах приводятся, также, данные по изучению изменения в восприятии тепла человеком под воздействием различных климатических факторов, как в естественной среде, так и в городской, при этом авторы используют для анализа, исчисление и данные по изучению биоклиматических показателей, приводимых исследовании В Стефанович А.А., Воскресенская Е.Н. [8]. Вопросам анализа климатических факторов на территории и его Крымского полуострова побережья посвящены работы Горбунова Р.В., Горбунова Т.Ю., Дрыгваль А.В., Табунщик В.А., Дегтярева А.Х., Жук В.О., Ергина Е.И., Hentschel G. A и др. [2, 3, 4, 9, 10].

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

Характеристика ветрового режима местности может выражаться в виде розы ветров. Для этого делается построение восьми румбов, на которых откладываются значения скорости в м/с и повторяемости в %. Соединяя между собой точки скоростей получаем розу ветров, а значений повторяемости – розу повторяемости [6].

Для уточнения типов проветривания квартир на юге при комфортной, теплой и жаркой погоде рекомендуется учитывать температурновлажностной режим. Анализ температурновлажностного режима г. Симферополь выполнен на основе графика шаблона, разработанного В. Е. Кореньковым и Б. А. Маминайшвили, который позволяет сопоставить зоны оптимальной относительной влажности при данных температурах с ходом фактической влажности воздуха. На графике даны верхние и нижние критические значения относительной влажности, ограничивающие зону комфорта (рис. 1) [6].

Рис. 1. Исходный график для анализа температурно влажностного режима

Fig. 1. Initial graph for temperature and humidity analysis

Для метода оценки биоклиматических показателей был выбран показатель эквивалентно-эффективной температуры (ЭЭТ), учитывающий комплексное влияние на человека температуры, влажности воздуха и скорости ветра [8]. ЭЭТ представляет собой сочетание метеовеличин, производящее тот же тепловой эффект, как и при неподвижном насыщенном воздухе и определенной температуре. Расчеты ЭЭТ проводятся по формуле Ф.Миссенарда [10]:

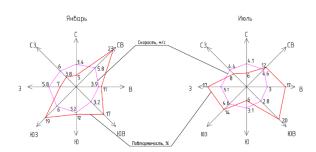
$$99T = 37 - \frac{37 - t}{0.68 - 0.0014f + \frac{1}{(1.76 + 1.4v^{0.75})}} - 0.29t(1 - 0.001f)$$

где t - температура воздуха, °C; v -скорость ветра, м/с, f - относительная влажность, %.

Также применяется формула ЭЭТ Б.А. Айзенштата [1]:

$$3TT = t(1 - 0.003(100 - f))
- 0.385v^{0.59}(36.6 - t)
+ 0.622(v - 1))
+ ((0.0015v + 0.008)(36.6 - t)
- 0.0167)(100 - f)$$

Данные среднемесячной температуры, для города Симферополь приняты по СП 131.13330.2020 "СНиП 23-01-99* Строительная климатология" [7]; скорости ветра на высоте 10 метров над земной поверхностью из архива доступных метеорологических станционных наблюдений за 2019-2023 гг., информация о которых взята на информационном портале 000 «Расписание погоды».


РЕЗУЛЬТАТЫ И ИХ АНАЛИЗ

Среднемесячные значения скорости и повторяемости ветра, суммарной солнечной радиации, температурно-влажностного режима, биоклиматического анализа представлены в таблицах 1, 2 и 5. По табличным значениям построена роза ветров для г. Симферополь (рис.2) и соответствующие графики (рис. 4, 5).

Таблица 1. Среднемесячные данные по скорости и повторяемости ветра в г. Симферополь.

Table 1. Average monthly data on wind speed and frequency in Simferopol.

Повторяемость направлений ветра (первая										
строчка), %, средняя скорость ветра по направлениям (вторая строчка), м/с										
Направление	С	СВ	В	ЮВ	Ю	ЮЗ	3	СЗ	Штиль,	
Январь	5	23	11	17	12	19	7	6	15	
	3,4	5,8	3,9	3,2	5,2	6	5,8	3,8		
Июль	6	12	17	20	6	14	17	8	13	
	4,1	4,6	3	2,8	3,1	4,6	5,1	4,4		

Рис. 2. Роза ветров января и июля для г. Симферополь. **Fig. 2.** The wind rose of january and july for Simferopol.

Рис. 3. График суммарной солнечной радиации (рассеянной и прямой) на горизонтальную поверхность при безоблачном небе г. Симферополь.

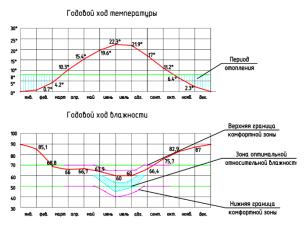

Fig. 3. Graph of total solar radiation (scattered and direct) on the horizontal surface under a cloudless sky Simferopol.

Таблица 2. Среднемесячная температура наружного воздуха и относительная влажность в г. Симферополь.

Table 2. Average monthly outside air temperature and relative humidity in Simferopol.

Месяц	1	2	3	4	5	6	7	8	9	10	11	12
Температура, °С.	0,0	0,7	4,2	10,3	15,4	19,6	22,3	21,9	17,0	11,2	6,4	2,3
Влажность, %	9,68	85,13	8,89	0,99	66,7	63,6	60,0	60,0	66,4	75,7	82,9	87,0

На первом графике показан годовой ход температуры, под ним расположен годовой ход относительной влажности, верхняя и нижняя границы комфортной зоны и зона оптимальной относительной влажности. На графике относительной влажности видно, что линия фактической относительной влажности с марта по сентябрь находится в зоне комфорта, но не проходит через зону оптимальной относительной влажности.

Рис. 4. График температурно влажностного режима г. Симферополь.

Fig. 4. Graph of temperature and humidity regime of Simferopol.

Летние месяцы можно охарактеризовать как жаркие, в г. Симферополе мы можем наблюдать комфортное сочетание относительной влажности и

температуры в течение периода с марта по сентябрь. Летние температуры (июль) в среднем составляют 22.3 °C , зимние (январь) 0.7 °C. Самая высокая температура летом была зафиксирована в 2010 году 8 августа +39,5 °C, а последний случай серьезных низких температур был отмечен в феврале 2012 года, температура в среднем составила -22 °C мороза. Расчет показателей биоклиматической комфортности климата

Самым важным показателем проектирования являются теплощущения человека. Климат воздействует на организм человека, это может быть, как положительным, отрицательным влиянием. Поэтому важно выполнять анализ природно-климатических факторов на основе биоклиматических критериев оценки среды строительства.

Таблица 3. Значения показателей теплощущения человека для проектирования г. Симферополь за 2019-2023 года.

Table 3. Values of human heat perception indicators for the design of Simferopol for 2019-2023.

Maggir				4	_			_	<u></u>	10	11	12
Месяц	1	2	3	4	3	6	/	0	9	10	11	12
2019	1,9	2,1	2,3	2,1	2,0	2,1	1,9	2,1	2,2	1,7	2,1	1,8
2020	2,2	2,5	2,4	2,4	2,1	1,9	2,0	2,0	1,9	1,7	1,8	2,0
2021	2,1	2,1	2,1	2,0	2,1	1,8	2,1	1,7	1,9	2,1	1,9	2,0
2022	2,2	2,1	2,4	2,3	2,0	1,9	1,8	1,7	1,8	1,8	1,9	1,7
2023		2,5	,	,	2,1	,	,	ĺ	,	,	,	2,1
среднее	2,04	2,26	2,28	2,16	2,06	1,9	1,94	1,9	2,0	1,84	2,06	1,92

Таблица 4. Классификация тепловой чувствительности по значениям ЭЭТ.

Table 4. Classification of Thermal Sensitivity by EET Values.

ET °C Уровень комфорта >30 Тепловая нагрузка сильная 2430 Тепловая нагрузка умеренная 1824 Комфортно − тепло 1218 Комфорт (умеренно тепло) 612 Прохладно 06 Умеренно прохладно −60 Очень прохладно −6−12 Умеренно холодно −12−18 Холодно −18−24 Очень холодно < −24 Начинается угроза обморожения	values.	
2430 Тепловая нагрузка умеренная 1824 Комфортно – тепло 1218 Комфорт (умеренно тепло) 612 Прохладно 06 Умеренно прохладно -60 Очень прохладно -612 Умеренно холодно -1218 Холодно -1824 Очень холодно <-24	ET °C	Уровень комфорта
1824 Комфортно — тепло 1218 Комфорт (умеренно тепло) 612 Прохладно 06 Умеренно прохладно —60 Очень прохладно —612 Умеренно холодно —1218 Холодно —1824 Очень холодно <-24 Начинается угроза	>30	Тепловая нагрузка сильная
1218 Комфорт (умеренно тепло) 612 Прохладно 06 Умеренно прохладно -60 Очень прохладно -612 Умеренно холодно -1218 Холодно -1824 Очень холодно <-24 Начинается угроза	2430	Тепловая нагрузка умеренная
612 Прохладно 06 Умеренно прохладно -60 Очень прохладно -612 Умеренно холодно -1218 Холодно -1824 Очень холодно <-24 Начинается угроза	1824	Комфортно – тепло
06 Умеренно прохладно -60 Очень прохладно -612 Умеренно холодно -1218 Холодно -1824 Очень холодно <-24 Начинается угроза	1218	Комфорт (умеренно тепло)
-60 Очень прохладно -612 Умеренно холодно -1218 Холодно -1824 Очень холодно <-24 Начинается угроза	612	Прохладно
-612 Умеренно холодно -1218 Холодно -1824 Очень холодно <-24 Начинается угроза	06	Умеренно прохладно
-1218 Холодно -1824 Очень холодно <-24 Начинается угроза	-60	Очень прохладно
_1824 Очень холодно <_24 Начинается угроза	-612	Умеренно холодно
< -24 Начинается угроза	-1218	Холодно
i z i i i i i i i i i i i i i i i i i i	-1824	Очень холодно
обморожения	< -24	Начинается угроза
		обморожения

Таблица 5. Среднемесячные значения эффективной и эквивалентно-эффективной температуры, °C.

Table 5. Monthly average values of effective and equivalent-effective temperature. °C.

equivalent effective temperature, e.												
Показатель	Месяц											
1101140414112	1	2	3	4	5	6	7	8	9	10	11	12
А. Миссенарда	5,6-	-8,7	-2,2	7,3	15,	21,	25,	25,	17,	8,8	9,0	-5,5
Б.А. Айзенштата	-17,8	-16,3	-6,8	2,3	8,2	13,7	16,7	16,4	10,3	2,3	-6,7	-12,9

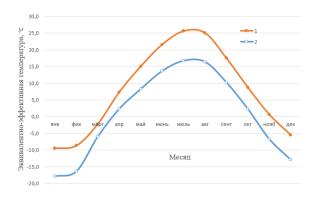


Рис. 5. График среднемесячных значений эффективной и эквивалентно-эффективной температуры, °C.

Fig. 5. Graph of monthly average values of effective and equivalent-effective temperature, °C.

выводы

- 1. Проведенные исследования позволили определить границы зон комфорта, влияние климата г. Симферополь на организм человека.
- 2. Результаты анализа природно-климатических факторов позволяют определить типологические требования по выбору архитектурных решений: архитектурно-планировочные, конструктивные и инженерно-технические средства регулирования микроклимата в застройке и зданиях для г. Симферополь с учетом его климата.

СПИСОК ЛИТЕРАТУРЫ

- 1. Айзенштат Б.А., Айзенштат Л.Б. Формула для расчета эквивалентно-эффективной температуры. Вопросы биометеорологии, 1974, N° 20(101), с. 81-83.
- 2. Горбунов Р.В., Горбунова Т.Ю., Дрыгваль А.В., Табунщик В.А. Изменение температуры воздуха в Крыму // Социально-экологические технологии. 2020. Т. 10. № 3. С. 370-383. DOI: 10.31862/2500-2961-2020-10-3-370-383.
- 3. Дегтерев А.Х. Изменение климата Крыма за последние десятилетия // Вопросы безопасности. 2020. № 2. DOI: 10.25136/2409-7543.2020.2.32821 URL: https://nbpublish.com'llbrary_read_article.php?id=328 21.
- 4. Жук В.О., Ергина Е.И. Анализ современной метеорологической ситуации в предгорном Крыму

- // Ученые записки Крымского федерального университета им. В.И. Вернадского. География. Геология. 2018. Т. 4 (70). № 2. С. 227–241. [Zhuk V.O., Yergina E.I. Analysis of the modern meteorological situation in the foothills of Crimea. Uchenye zapiski Krymskogo federalnogo universiteta imeni V.I. Vernadsskogo. Geografiya. Geologiya. 2018. Vol. 4 (70). No. 2. Pp. 227–241. (In Rus.)].
- 5. Лицкевич, В. К. Жилище и климат / В. К. Лицкевич. Москва: Стройиздат, 1984. 288 с.
- 6. Мягков М.С., Губернский Ю.Д., Конова Л.И., Лицкевич В.К. Город, архитектура, человек и климат. М Архитектура С 343 с.
- 7. Свод правил СП 131.13330.2020 "СНиП 23-01-99* Строительная климатология" (утв. приказом Министерства строительства и жилищно-коммунального хозяйства РФ от 24 декабря 2020 г. N 859/пр).
- 8. Стефанович А.А., Воскресенская Е.Н. Изменения комплексных биоклиматических показателей в Крыму с середины XX века // Экология человека. 2023. Т. 30, $N^{\rm o}$ 1. С. 65-77. DOI https://doi.org/10.17816/humeco111767.
- 9. Hentschel G. A human biometeorology classification of climate for large and local scales. WMO/HMO/UNEP Symposium on Climate and Human Health. Leningrad, 1986. Vol. I. WCPA No. 1, WMO.
- 10. Missenard F. Température effective d'une atmosphere Généralisation température résultante d'un milieu. In: Eneyclopédie Industrielle et Commerciale, Etude physiologique et technique de la ventilation. Librerie de l'Enseignement Technique. 1933. P. 131-185.

REFERENCES

- 1. Eizenstat B.A., Eizenstat L.B. Formula for calculating equivalent-effective temperature. Problems of Biometeorology, 1974, N° 20(101), pp. 81-83.
- 2. Gorbunov R.V., Gorbunova T.Yu., Drygval A.V., Tabunshchik V.A. Izmenenie temperaturea vozdukh v Krymu [Change of air temperature in Crimea]. 2020. T. 10. N° 3. C. 370-383. DOI: 10.31862/2500-2961-2020-10-3-370-383.
- 3. Degterev A.Kh. Climate change in Crimea over the last decades. 2020. № 2. DOI: 10.25136/2409-7543.2020.2.32821 URL: https://nbpublish.com'llbrary_read_article.php?id=328 21.
- 4. Zhuk V.O., Ergina E.I. Analysis of the modern meteorological situation in the foothills of the Crimea. V.I. Vernadsky. Geography. Geology. 2018. T. 4 (70). № 2. Pp. 227–241. [Zhuk V.O., Yergina E.I. Analysis of the modern meteorological situation in the foothills of Crimea. Uchenye zapiski Krymskogo federalnogo universiteta imeni V.I. Vernadsskogo. Geografiya. Geologiya. 2018. Vol. 4 (70). No. 2. Pp. 227–241. (In Rus.)].
- 5. Litskevich V. K. Zhilite i klimat [Housing and climate]. Moscow: Stroyizdat, 1984. 288 p. (in Russian).

- 6. Myagkov M.S., Gubernskiy Yu.D., Konova L.I., Litskevich V.K. Gorod, arkhitektura, chelovek i klimat [City, architecture, man and climate]. M Architecture S 343 p.
- 7. Code of Rules SP 131.13330.2020 "SNiP 23-01-99* Stroitelnaya climatology" (approved by the order of the Ministry of Construction, Housing and Utilities of the Russian Federation dated December 24, 2020 N 859/pr).
- 8. Stefanovich A.A., Voskresenskaya E.N. Changes in complex bioclimatic indicators in Crimea since the
- middle of the twentieth century. 2023. T. 30, N° 1. C. 65-77. DOI https://doi.org/10.17816/humeco111767.
- 9. Hentschel G. A human biometeorology classification of climate for large and local scales. WMO/HMO/UNEP Symposium on Climate and Human Health. Leningrad, 1986. Vol. I. WCPA No. 1, WMO
- 10. Missenard F. Température effective d'une atmosphere Généralisation température résultante d'un milieu. In: Eneyclopédie Industrielle et Commerciale, Etude physiologique et technique de la ventilation. Librerie de l'Enseignement Technique. 1933. P. 131-185.

ANALYSIS OF THE CLIMATE AND TAKING INTO ACCOUNT ITS FEATURES IN THE DESIGN OF BUILDINGS IN SIMFEROPOL

Kazmina¹ A.I., Rodin² S.V., Bogutsky³ Y.G., Bogutskaya⁴ A.Y.

V.I. Vernadsky Crimean Federal University, Institute "Academy of Construction and Architecture" 181, Kievskaya str., Simferopol, Republic of Crimea, 295493
E-mail: ¹kazmina.albina@yandex.ru; ²sv_rodin@mail.ru; ³bogutskiyyg@mail.ru; ⁴abogutskaya2004@mail.ru

Abstract. The purpose of the work is to develop typological recommendations for the designed buildings in Simferopol based on the architectural analysis of natural and climatic conditions. The study requires a detailed study of the temperature regime, temperature and humidity regime, temperature and wind regime, solar radiation and the bioclimatic characteristics of the construction area.

Subject of the study: Human heat sensations are influenced by the interaction of factors such as temperature, solar radiation, air humidity and the speed of its movement. Depending on the combination of these factors, a person's heat perception can vary.

Materials and methods: To achieve this goal, the following values were analyzed: average monthly outdoor temperature, relative humidity, wind speed and direction, and solar radiation. To assess the effect of climate on the human body, an equivalent-effective temperature and a normal equivalent temperature were calculated. AutoCAD and Microsoft Excel software were used to build the graphs.

Results: The conducted research allowed us to determine the boundaries of comfort zones, the influence of the Simferopol climate on the human body.

Conclusions: The results of the analysis of natural and climatic factors allow us to determine the typological requirements for the choice of architectural solutions: architectural planning, structural and engineering means of regulating the microclimate in buildings and buildings for Simferopol, taking into account its climate.

Key words: climate, architectural analysis, typology, heat perception, bioclimatic indicators..