Раздел 4. Экологическая безопасность

УДК 532. 631.371:628.179.2:628.31

МОДЕЛИРОВАНИЕ В АППАРАТАХ ОБРАБОТКИ СТОЧНЫХ ВОД ЛОКАЛЬНОГО ВОДООЧИСТНОГО ОБОРУДОВАНИЯ СИСТЕМ ОБОРОТНОГО ВОДОСНАБЖЕНИЯ (В ПОРЯДКЕ ОБСУЖДЕНИЯ)

Мовчан¹ С.И., Николенко² И.В.

¹ФГБОУ ВО «Мелитопольский государственный университет» 272312 Запорожская область, г. Мелитополь, проспект Б. Хмельницкого, 18 ²ФГАОУ ВО «Крымский федеральный университет им В.И. Вернадского», Институт биохимических технологий, экологии и фармации, 295493, Республика Крым, г. Симферополь, улица Киевская,181. e-mail: ¹msi.movchan@gmail.com, ²nikoshi@mail.ru

Аннотация. Рассмотрены вопросы моделирования напорных аппаратов обработки сточных вод локального водоочистного оборудования систем оборотного водоснабжения, рассматривающая связь элементарной циркуляции с компонентами вихря, основой которой является теорема Стокса, что позволяет установить взаимосвязь водных потоков восходящими и нисходящими потоками, ограниченного в напорных аппаратах электрофлотации и электрокоагуляции. Рассмотрено процесс циркуляция скорости жидкости по замкнутому контуру равна напряжению вихря, пронизывающего его, для трёх случаев, которое наглядно иллюстрируется, как сумма напряжений вихревых шнуров равная сумме их циркуляции. В этом случае можно рассматривать все процессы, происходящие внутри каждого аппарата, используемого в процессах водообработки.

Предмет исследования: локальное водоочистное оборудование в системах оборотного водоснабжения промышленных предприятий.

Материалы и методы: для оценки работоспособности существующих и вновь разрабатываемых систем обработки сточных вод применялись количественные и качественные показатели их обработки, что позволило выбрать оптимальное решение в работе систем оборотного водоснабжения.

Результаты: моделирование систем подачи сточных вод восходящими и нисходящими потоками, в напорных системах, позволяет снизить гидравлическую нагрузку, уменьшить сопротивления и обеспечить моделирование гидравлических явлений под преобладающим действием сил тяжести водного потока.

Выводы: С учётом действия сил, на каждую частицу, согласно закону Стокса установлена взаимосвязь между гидромеханическими параметрами частиц примесей водных растворов (эффективного диаметра, электрокинетического дзета-потенциала, электрофоретической скорости, количества частиц). Согласно теории электрофореза и седиментации, разработанной Смолуховским и Гюккелем, теоремы Стокса, рассматренs все процессы, происходящие внутри каждого аппарата локального водоочистного оборудования, для циркуляция скорости совершается вокруг вихревого шнура непосредственно по поверхности вихревой трубки.

Ключевые слова: аппараты, локальное оборудование, электрофлотация, электрокоагуляция, элементарная циркуляция, компоновка вихря, скорость жидкости.

Работа выполнена в рамках Государственного заказа на оказание государственных услуг (выполнение работ) № 075-03-2025-418 от 17.01.2025 г. «Инновационные технологии использования воды и водных ресурсов в системах оборотного водоснабжения» (FRRS 2023-0039)»

ВВЕДЕНИЕ

При моделировании гидравлических явлений важное значение имеет одинаковое происхождение природы физической сущности, происходящих процессов. Исходя из условий режимов движения очевидно, что в гидродинамически подобных потоках имеет место подобие движения жидкости восходящими и/или нисходящими потоками при ламинарном движении [3].

Моделирование гидродинамических процессов в водохозяйственном секторе России играет ключевую роль в реализации стратегических задач развития страны. Это направление является важной частью федеральной целевой программы "Развитие

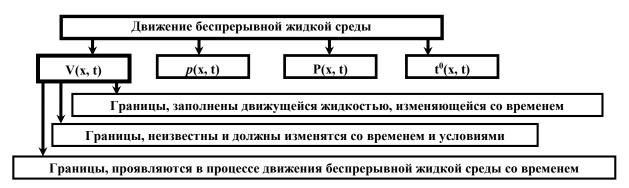
водохозяйственного комплекса Российской Федерации" [1, 2].

АНАЛИЗ ПУБЛИКАЦИЙ

Одним из ключевых аспектов устойчивого и эффективного развития водохозяйственного комплекса является интеграция водных ресурсов в производственные процессы предприятий различных отраслей экономики. В рамках данного подхода особое внимание уделяется разработке и внедрению инновационных технологий водоочистки, что способствует повышению экологической безопасности и экономической эффективности водопользования. [4].

Рассматривая вопросы моделирования, в напорных системах в аппаратах обработки сточных

вод, необходимо учитывать, что сумма напряжений вихревых шнуров, образующихся во внутреннем объёме локального водоочистного оборудования, непосредственно рвана сумме их циркуляции во внутреннем объёме, что является определяющим факторов в работе водоочистного оборудования. В частности, рассмотрены дифференциальные движения идеальной жидкости, в основе которых используются уравнения покоя, введя в эти уравнения силу инерции, отнесённые к единице массы движущейся жидкости [5]. моделировании гидравлических явлений также представлены условия неустановившегося движения жидкости в напорных системах, когда движение происходит в напорной системе, когда имеет место несколько секций (уравнительных систем). Следует иметь ввиду, что отдельные секции характеризуются различными формами технологических проведения процессов, значительными гидравлическими сопротивлениями и свойствами водного потока, определяющими технологическими процессами [6]. Немаловажным условием работы водоочистного оборудования является создание условий для ламинарного режима движения реальных жидкостей.


Ламинарное течение характеризуется упорядоченным движением параллельных слоев жидкости без поперечного перемешивания. Такое, ламинарное течение жилкостей, наиболее полно проявляется восходяшими И нисходяшими потоками т.е. сточных вод, в аппаратах локального водоочистного оборудования [11]. В отличие от обеспечивает турбулентного режима, оно частиц, предсказуемую траекторию теоретически идеально для гравитационной сепарации в отстойниках, флотаторах и осадительных центрифугах [12]. Однако практическая реализация стабильного ламинарного потока в промышленных масштабах сталкивается с фундаментальными противоречиями:

- гидродинамический парадокс: уменьшение габаритов сооружений и аппаратов для снижения капитальных затрат провоцирует увеличение числа Рейнольдса (Re), непосредственно нарушающую сплошность потока [13; 14];
- технологические условия, повышающие требования к производительности водоочистного оборудования, позволяющих увеличивать скорость потока, приближая Re к критическому значению ~ 2000 , для круглых сечений водоочистного оборудования [15];
- геометрическая несовместимость: компактные конструкции усиливают влияние входных эффектов, углов поворота и шероховатости и т.п., непосредственно влияющих на увеличение гидравлических сопротивлений [16].

ОБСНОВАНИЕ НАПРАВЛЕНИЕ ИССЛЕДОВАНИЙ

Для математического описания работы локального водоочистного оборудования важным фактором являются вопросы движения водных потоков восходящими и нисходящими потоками.

Условия проведения моделирования и модели фильтрации, в зависимости различных условий формирования электрического поля представлены на рис. 1.

Рис. 2. Блок-схема условий движения сплошной жидкостной среды **Fig. 2.** Block diagram of the conditions of motion of a continuous liquid medium

Всякое движение жидкости характеризуется скоростями отдельных частиц, и при решении задач общая картина движения заменяется кинематической схемой, т. е. движение каждой точки в свою очередь характеризуется отдельным вектором скорости, глубиной погружения и давлением. Скорость (v), глубина погружения (h) и давление (P) называются компонентами движения. Компоненты движения могут изменяться в зависимости от координат и времени, т. е. в общем случае можно написать:

$$\blacksquare u = \varphi_1(x, y, z, t);$$

$$\blacksquare h = \varphi_2(x, y, z, t);$$

$$\blacksquare P = \varphi_3(x, y, z, t).$$

Если компоненты зависят только от координат, а не от времени, то такое движение называется установившимся. Установившимся движением жидкости называется такое движение, при котором скорость течения и гидродинамическое давление в любой точке движущейся жидкости не изменяются течением времени. Примерами установившегося движения могут служить истечение жидкости из крана бака, когда горизонт жидкости в баке будет оставаться постоянным, а также движение воды в

канале при постоянном горизонте воды. В общем, примером может служить течение при постоянном напоре [5, стр. 86-89, 68].

Установившееся движение в общем, виде можно записать:

- $u = \varphi_1(x, y, z)$;
- $h = \varphi_2(x, y, z)$;
- $\blacksquare P = \varphi_3(x, y, z).$

Поэтому разработка математических моделей для систем сложного движения водных потоков восходящих и нисходящих является актуальной задачей в работе напорных систем обработки сточных вод.

Свободная поверхность Z(0) $d_{\mathbf{x}}$

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

И ИХ АНАЛИЗ

1. Силы, действующие на движущую частицу

Для получения полной картины действия сил, свободную действующих на поверхность, вертикальной и горизонтальной плоскостях в движущейся жидкости, представлено на рис. 3, рассмотренную при теоретическом обосновании очистки сточных вод [7].

 $F_{\scriptscriptstyle A}$ _{- С}ила выталкивания или сила архимеда;

 F_c - СИЛА СОПРОТИВЛЕНИЯ, КОТОРАЯ уравновешивает силу тяжести F_{G} , определяемую весом G;

 F_G - СИЛА ТЯЖЕСТИ, ГДЕ G ВЕС;

 $F_{\scriptscriptstyle K}$ - сила кулона, действующая на заряженную частицу;

 $F_{C}\,$ - СИЛА СТОКСА (ВЯЗКОСТИ).

Рис. 3. Диаграмма сил, действующих на свободно осаждаемую частицу и движущуюся в жидкой среде [7]: Fig. 3. Diagram of forces acting on a freely settling particle and moving in a liquid medium

Согласно теории электрофореза и седиментации, разработанной Смолуховским и Гюккелем, в которой движение частицы в электрическом поле рассматривается как результат действия на ее поверхностный заряд силы Кулона со стороны электрического силы вязкости

горизонтальной плоскости. А в вертикальной плоскости: силе тяж ести, силе вязкости и силы Архимеда. Такое расположение сил и их действие, по соответствующим направлениям, стало основой проведенных исследований, учитывающих сумму сил в вертикальной и горизонтальной плоскостях:

$$\begin{cases} \vec{F}_{\kappa} + \vec{F}_{c} = 0 \\ \vec{F}_{m} + \vec{F}_{A} + \vec{F}_{c} = 0 \end{cases}$$
 (1)

- с учетом вышеозначенных сил, действующих в различных плоскостях, имеем:

$$F_{\kappa} = 4 \cdot \pi \cdot \varepsilon \cdot \varepsilon_{o} \cdot r \cdot \xi \cdot E = 6 \cdot \pi \cdot r \cdot \eta \cdot V_{\Gamma} = F_{c}$$
(2.1)

$$\vec{F} = m \cdot \vec{g} = \rho \cdot V \cdot \vec{g} = \rho \cdot \frac{4}{3} \cdot \pi \cdot \frac{D^3}{8} \cdot \vec{g} = \frac{1}{6} \cdot \pi \cdot D^3 \cdot \rho \cdot \vec{g}$$
 (2.2)

$$\vec{F} = m \cdot \vec{g} = \rho \cdot V \cdot \vec{g} = \rho \cdot \frac{4}{3} \cdot \pi \cdot \frac{D^3}{8} \cdot \vec{g} = \frac{1}{6} \cdot \pi \cdot D^3 \cdot \rho \cdot \vec{g}$$

$$\vec{F}_A = -m_I \cdot \vec{g} = -\rho_I \cdot V \cdot \vec{g} = -\frac{1}{6} \cdot \pi \cdot D^3 \cdot \rho_I \cdot \vec{g}$$
(2.2)

$$\vec{F}_c = -6 \cdot \pi \cdot \frac{D}{2} \cdot \eta \cdot \vec{V}_B \tag{2.4}$$

2. Гидромеханические параметры сферических частиц примесей водных растворов

Исследования движения частиц примесей водных растворов восходящими и нисходящими (рис. 3), согласно закону Стокса, согласно формуле (3) для сферических частиц потоками позволили установить гидромеханические параметры частиц примесей водных растворов (эффективного диаметра, электрокинетического дзета-потенциала, электрофоретической скорости, количества частиц):

$$n \cdot \frac{\partial C_2}{\partial t} = C_D \cdot \frac{\partial C_1}{\partial x^3} + C_v \cdot \frac{\partial C_2}{\partial x^2} + C_{\xi} \cdot \frac{\partial C_3}{\partial x^3} + C_n \cdot \frac{\partial C_4}{\partial x^4} - \upsilon \frac{\partial C_5}{\partial x^3} , \tag{3}$$

где C_D , C_V , C_{ξ} , C_n — концентрация гидромеханических параметров определяемых частиц примесей водных растворов соответственно D, V, ξ и n.

Данное уравнение (3) рассматривает начальные условия с учётом предельных условий, которые были рассмотрены ранее

Учитывая вышеприведенные условия, а также то, что между основными гидромеханическими параметрами частиц примесей $(D, V, \xi \ u \ n)$ водных растворов имеет место не только функциональная, но и математическая зависимость:

$$V_{B} = \frac{D^{2} \cdot g \cdot (\rho - \rho_{1})}{18 \cdot \eta}, \qquad V_{\Gamma} = \frac{2}{3} \cdot \frac{\varepsilon \cdot \varepsilon_{o} \cdot E \cdot \xi}{\eta}, \qquad \xi = \frac{3}{2} \cdot \frac{\vec{V}_{\Gamma} \cdot \eta}{\varepsilon \cdot \varepsilon_{o} \cdot E}, \qquad D = \sqrt{\frac{18 \cdot \eta \cdot V_{B}}{g \cdot (\rho - \rho_{1})}}, \qquad (4)$$

возникающих из условий движения частиц в вертикальной и горизонтальной плоскостях и сил, действующих в данных условиях (соответственно теории электрофореза Смолуховского и Гюккеля).

Тогда, для общей массы и массы дисперсной фазы водного раствора, получим уравнение, учитывающее взаимосвязь процессов, в системах оборотного водоснабжения:

$$(G_{CB} \cdot x_{CB}) \cdot m_j^i = (G_{CB}^{Ou} \cdot x_{CB}^{Ou} + G_{CB}^{Onm} \cdot x_{CB}^{Onm} + G_{CB}^{Onm} \cdot x_{P.B.}) \cdot m_j^i,$$
 (5)

где m_{j}^{i} - коэффициент, учитывающий количественный показатель загрязнений в соответствующей системе.

Применим теорию импульсов исследования водного потока в трехмерной системе координат.

Учитывая нестационарность течения водного потока, действие внешних массовых сил и отказавшись от упрощений и предположений, запишем теорию импульсов для соответствующих направлений в декартовой системе координат. Получим следующие уравнения:

$$\rho \cdot \left(\frac{\partial u}{\partial \Theta} + u \frac{\partial u}{\partial x} + v \frac{\partial C}{\partial y} + \omega \frac{\partial P}{\partial z} \right) + \frac{\partial P}{\partial x} =$$

$$= \frac{\partial}{\partial z} \left\{ \mu \cdot \left[2 \cdot \frac{\partial u}{\partial x} - \frac{2}{3} \cdot \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial \omega}{\partial z} \right) \right] \right\} +$$

$$+ \frac{\partial}{\partial y} \cdot \left[\mu \cdot \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \right) \right] + \frac{\partial}{\partial} \left[\mu \cdot \left(\frac{\partial \omega}{\partial x} - \frac{\partial u}{\partial z} \right) \right] + X$$

$$(6)$$

где X - массовая сила, действующая в направлении оси X , H/M^3 .

Аналогичные уравнения можно записать для других направлений ${\cal Y}$ и ${\cal Z}$ [6, стр. 41].

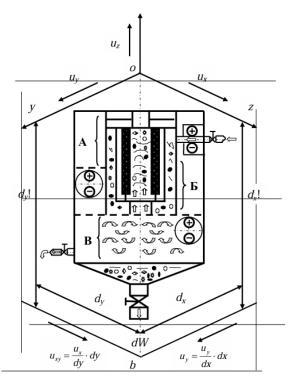
3. Связь элементарной циркуляции с компонентами вихря. Теорема Стокса

Установим связь элементарной циркуляции с компонентами вихря, в основе которой лежит использование теоремы Стокса. Рассмотрим схему

циркуляции восходящими и нисходящими потоками в аппаратах напорной электрофлотации-электрокоагуляции, на бесконечно малом контуре, в плоскости со сторонами dx и dy площадь обозначим dW_z (рис. 4).

Пусть циркуляция скорости жидкости по часовой стрелке будет положительной, а против часовой стрелки

Полный дифференциал скорости жидкости для данного случая согласно формулы (7) будет:


$$d\Gamma_z = x_x \cdot dx + \left(u_y + \frac{du_y}{d_x} \cdot dx\right) \cdot dy - \left(u_x + \frac{du_x}{dy} \cdot dy\right) dx - u_x \cdot dy = \left(\frac{du_y}{dx} - \frac{du_x}{dy}\right) \cdot dx \cdot dy = 0 \quad (7)$$

С учётом равенства (3) получим следующее соотношение:

$$d\Gamma_z = \left(\frac{du_y}{dx} - \frac{du_x}{dy}\right) \cdot dx \cdot dy = 2 \cdot \omega_s \cdot dy \cdot dx \ . \tag{8}$$

или

$$d\Gamma_z = 2 \cdot \omega_z \cdot dW_z \,. \tag{9}$$

Рис. 4. Схема циркуляции восходящими и нисходящими потоками в аппаратах напорной электрофлотацииэлектрокоагуляции

Fig. 4. Scheme of circulation with ascending and descending flows in pressure electroflotation-electrocoagulation devices

Аналогично получим связь элементарных циркуляций на остальные две оси:

$$\begin{cases}
d\Gamma_z = 2 \cdot \omega_z \cdot dW_z, \\
d\Gamma_y = 2 \cdot \omega_y \cdot dW_y, \\
d\Gamma_z = 2 \cdot \omega_z \cdot dW_z.
\end{cases}$$
(10)

Выражение проекции циркуляции для контура конечных размеров можно записать в виде:

$$\Gamma_x = 2 \cdot \int_W \omega_x \cdot dW_x \,,$$

$$\Gamma_y = 2 \cdot \int_W \omega_y \cdot dW_y \,,$$

$$\Gamma_z = 2 \cdot \int_W \omega_z \cdot dW_z \,.$$
 (11)

Следовательно, можно записать:

$$\Gamma = 2 \cdot \int_{W} \omega_z \cdot dW_n \ . \tag{12}$$

Сопоставим равенства (7) и (12), получим:

$$\Gamma = I$$
 . (13)

Следовательно, циркуляция скорости жидкости по замкнутому контуру равна напряжению вихря, пронизывающего его.

Это положение называется теоремой Стокса. Теорема Стокса справедлива для трёх случаев [7]:

1. Циркуляция скорости происходит вокруг одиночного вихря, что доказано выводом формулы (12).

2. Циркуляция скорости совершается вокруг вихревого шнура непосредственно по поверхности вихревой трубки.

Для доказательства этого разделим площадь, охваченную контуром, на бесконечное большое число элементарных прямоугольников (рис. 4), из которых каждый пронизывается вихревой линией, а вся совокупность этих линий образует вихревой шнур.

Циркуляция скорости каждого прямоугольника по периметру равна, согласно равенству (13) напряжению вихря. Следовательно, сумма циркуляции скорости жидкости всем ПО элементарным контурам прямоугольников, образующие своей совокупностью сечение вихревой трубки, равна сумме вихрей линий, образующих шнур.

3. Циркуляция скорости охватывает контур, пронизанный в разных местах отдельными вихревыми шнурами.

Это легко доказать, если принять, что сумма напряжений вихревых шнуров:

$$I = I_1 + I_2$$
 , (14)

равно сумме их циркуляции:

$$\Gamma_1 + \Gamma_2 = \Gamma \tag{15}$$

где I - Γ напряжений вихревых шнуров, зависящая суммарной их циркуляции.

Таким образом, сумма напряжений вихревых шнуров, образующихся во внутреннем объёме локального водоочистного оборудования, непосредственно рвана сумме их циркуляции во внутреннем объёме, что является определяющим факторов в работе водоочистного оборудования.

выводы:

- 1. Рациональное и эффективное использование воды и водных ресурсов в системах оборотного водоснабжения является одним из стимулов развития региональной экономики, предприятий используемых воду и водные ресурсы в системах повторного и многократного использования воды и водных ресурсов.
- 2. Установленная математическая зависимость позволяет определить отдельные параметры частиц водных растворов вертикальных аппаратов при электрохимической коагуляции-флотации, в основе которых используются восходящие и нисходящие водные потоки.
- 3. Согласно теоремы Стокса, установлена взаимосвязь элементарной циркуляции водных потоков восходящих и нисходящих компонентами вихревых потоков, позволяющих интенсифицировать процессы обработки сточных вол
- 4. Теоретически проверено и практически подтверждено, что моделирование во внутренних объёмах аппаратов обработки сточных вод локального водоочистного оборудования, является подтверждением выбора ресурсосберегающих технологий, обеспечивающих эффективную обработку сточных вод примышленных предприятий.
- 5. Сумма напряжений вихревых шнуров (потоков), образующихся во внутреннем объёме локального водоочистного оборудования, непосредственно рвана сумме их циркуляции во внутреннем объёме, что является определяющим факторов в работе водоочистного оборудования.

6. Рассмотрены физико-математические основы доминирования вязких сил, их количественная оценка проявляется вследствие нарушения ламинарности, что позволяет оптимизировать очистные сооружений и аппараты локального водоочистного оборудования.

СПИСОК ЛИТЕРАТУРЫ

1. Постановление Правительства РФ от 19.04.2012 N 350 (ред. от 31.05.2017) "О федеральной целевой программе "Развитие водохозяйственного комплекса Российской Федерации в 2012-2020 годах".

Электронный ресурс: режим доступа: http://government.ru/docs/37156/ (дата обращения 10.06.2024 г.)

2. Водная стратегия Российской Федерации на период до 2020 года. Распоряжение Правительства РФ от 27 августа 2009 г. N 1235-p.

Электронный ресурс: режим доступа http://government.ru/docs/10049/ (дата обращения 10.06.2024 г.)

- 3. Данилов-Данильян В.И. Водные ресурсы мира и перспективы водохозяйственного комплекса России. М.: ООО «Типография Левко», Институт устойчивого развития/Центр экологической политики России, 2009. 88 с.
- 4. Яковлев С.В., Губин И.Г., Павлинов И.И., Родин В.Н. Комплексное использование водных ресурсов. М.: Высшая школа, 2005. 234с.
- 5. Дидур В.А., Грачёва Л.И., Радул Н.Н., Орел А.Н. Гидроаэромеханика и её использование в энергетике АПК. Учебное пособие для сельскохозяйственных вузов / В.А. Дидур, Л.И. Грачёва, Н.Н. Радул, А.Н. Орел. М.: МГАУ, 2008. 395 с.
- 6. Леви И.И. Моделирование гидравлических явлений / И.И. Лева. Изд-во «Энергия», Ленин-ое од-ние, 1967. 235 с.
- 7. Куликов Н.И. Теоретические основы очистки воды: учебное пособие / Н.И. Куликов, А.Я. Найманов, Н.П. Омельченко, В.Н. Чернышев. Донецк: изд-во «Ноулидж» (Донецкое отделение), 2009. 298 с.
- 8. Артамонов В.В. Процеси і апарати технології водоочистки: Навч. посібник / В.В. Артамонов, Т.В. Вижевська. Рівне: РДТУ, 1999. 127 с.
- 9. Бунина Л.Н., Николенко И.В., Мовчан С.И. Усовершенствовании и исследование конструкции аппарата очистки сточных вод при осветлении / Л.Н. Бунина, И.В. Николенко, С.И. Мовчан // Строительство и техногенная безопасность. Научно-технический журнал по строительству и архитектуре. 2023. №28(80). С. 53-60.

https://stroyjurnalasa.ru/index.php/asa/issue/download/79/74

10. Николенко И.В., Мовчан С.И. Интенсификация ресурсосберегающих технологий использования воды при обработке сточных вод промышленных предприятий // Водоснабжение и

- санитарная техника, 2024. №8. С. 30-42. DOI: 10.35776/VSI.2024.08.
- 11. Штеренлихт, Д.В. Гидравлика: учебник для вузов / Д. В. Штеренлихт. 5-е изд., стереотип. Санкт-Петербург: Лань, 2022. 656 с.
- 12. Кульков, А. А. Процессы и аппараты нефтегазопереработки и нефтехимии: учебник для вузов / А.А. Кульков, В.А. Сарданашвили. Москва: Российский государственный университет нефти и газа им. И.М. Губкина, 2016. 555 с.
- 13. Дытнерский, Ю.И. Процессы и аппараты химической технологии: учебник для вузов: в 2 ч. / Ю.И. Дытнерский. 3-е изд., стереотип. Москва: Химия, 2002. Ч. 1. Теоретические основы процессов химической технологии. Гидромеханические и тепловые процессы и аппараты. 400 с.
- 14. Расчеты и задачи по процессам и аппаратам химической технологии: учебное пособие для вузов / В.Л. Пебалк, В.М. Виноградов, В.М. Ульянов [и др.]; под ред. В.Л. Пебалка. Москва: Химия, 2001. 576 с.
- 15. Кулов, Н.Н. Математическое моделирование в химической технологии и биотехнологии / Н.Н. Кулов, Р.Ф. Апостолов, А.А. Аратюнов // Теоретические основы химической технологии. 2014. -T. 48, № 3. С. 243-248.
- 16. Идельчик, И.Е. Справочник по гидравлическим сопротивлениям / И.Е. Идельчик; под ред. М.О. Штейнберга. 4-е изд., перераб. и доп. Москва: Машиностроение, 2012. 466 с.

REFERENCES

- 1. Resolution of the Government of the Russian Federation of 19.04.2012 N 350 (as amended on 31.05.2017) "On the federal target program "Development of the water management complex of the Russian Federation in 2012-2020".
- 2. Water strategy of the Russian Federation for the period up to 2020. Order of the Government of the Russian Federation of August 27, 2009 N 1235-r.
- 3. Danilov-Danilyan V.I. Water resources of the world and prospects of the water management complex of Russia. M.: OOO "Tipografiya Levko", Institute of Sustainable Development/Center for Environmental Policy of Russia, 2009. 88 p.
- 4. Yakovlev S.V., Gubin I.G., Pavlinov I.I., Rodin V.N. Integrated use of water resources. M.: Higher School, 2005. 234p.
- 5. Dydur V.A., Gracheva L.I., Radul N.N., Orel A.N. Hydro-aeromechanics and its use in the energy sector of the agricultural sector. Textbook for agricultural universities / V.A. Dydur, L.I. Gracheva, N.N. Radul, A.N. Eagle. M.: Moscow State University, 2008. 395 p.
- 6. Levi I.I. Modeling of hydraulic phenomena / I.I.Lev. Publishing house "Energy", Lenin-oe od-nie, 1967.- 235 p.

- 7. Kulikov N.I. Theoretical foundations of water purification: a tutorial / N.I. Kulikov, A.Ya. Naimanov, N.P. Omelchenko, V.N. Chernyshev. Donetsk: Knowlidge Publishing House (Donetsk branch), 2009. 298 p.
- 8. Artamonov V.V. Processes and devices of water treatment technology: Textbook / V.V. Artamonov, T.V. Vyzhevskaya. Rivne: RDTU, 1999. 127 p.
- 9. Bunina L.N., Nikolenko I.V., Movchan S.I. Improvement and study of the design of wastewater treatment apparatus for clarification / L.N. Bunina, I.V. Nikolenko, S.I. Movchan // 2170. K2. Construction and industrial safety. Scientific and technical journal on construction and architecture. − 2023. № 28(80). P. 53-60.

https://stroyjurnal-asa.ru/index.php/asa/issue/download/79/74

- 10. Nikolenko I.V., Movchan S.I. Intensification of resource-saving technologies for water use in wastewater treatment of industrial enterprises // Water supply and sanitation, 2024. 8. C. 30-42. DOI: 10.35776/VSI.2024.08.
- 10. Nikolenko I.V., Movchan S.I. Intensification of resource-saving technologies for water use in industrial wastewater treatment // Water supply and sanitary engineering, 2024. No. 8. Pp. 30-42. DOI: 10.35776/VSI.2024.08.
- 11. Shterenlicht, D.V. Hydraulics: a textbook for universities / D. V. Shterenlicht. 5th ed., stereotype. St. Petersburg: Lan, 2022. 656 p.
- 12. Kulkov, A. A. Processes and apparatuses for oil and gas refining and petrochemistry: a textbook for universities / A.A. Kulkov, V.A. Sardanashvili. Moscow: Russian State University of Oil and Gas named after I.M. Gubkina, 2016. 555 p.
- 13. Dytnersky, Yu.I. Processes and apparatuses of chemical engineering: a textbook for universities: in 2 parts / Yu.I. Dytnersky. 3rd ed., stereotype. Moscow: Chemistry, 2002. Part 1. Theoretical foundations of chemical engineering processes. Hydromechanical and thermal processes and apparatuses. 400 p.
- 14. Calculations and problems for processes and apparatuses of chemical engineering: a textbook for universities / V.L. Pebalk, V.M. Moscow: Chemistry, 2001. 576 p.
- 15. Kulov, N.N. Mathematical modeling in chemical engineering and biotechnology / N.N. Kulov, R.F. Apostolov, A.A. Aratyunov // Theoretical Foundations of Chemical Technology. 2014. Vol. 48, No. 3. P. 243-248.
- 16. Idelchik, I.E. Handbook of Hydraulic Resistances / I.E. Idelchik; edited by M.O. Shteinberg. 4th ed., revised and enlarged. Moscow: Mashinostroenie, 2012. 466 p.

MODELING IN WASTEWATER TREATMENT APPARATUS LOCAL WATER TREATMENT EQUIPMENT RECYCLING WATER SUPPLY SYSTEMS (for discussion)

¹Movchan S.I., ² Nikolenko I.V.

Melitopol State University
 Address: Zaporozhye region, Melitopol, B. Khmelnitsky Ave., 18
 ²V.I. Vernadsky Crimean Federal University,
 Institute of Biochemical Technologies, Ecology and Pharmacy
 295493, Republic of Crimea, Simferopol, Kyiv Street, 181.
 e-mail: ¹msi.movchan@gmail.com, ²nikoshi@mail.ru

Abstract. The article considers the issues of modeling pressure devices for wastewater treatment of local water treatment equipment of circulating water supply systems, considering the relationship of elementary circulation with the components of the vortex, the basis of which is the Stokes theorem, which allows us to establish the relationship of water flows with ascending and descending flows, limited in pressure devices of electroflotation and electrocoagulation. The process of circulation of the liquid velocity along a closed circuit is considered equal to the voltage of the vortex penetrating it, for three cases, which is clearly illustrated as the sum of the voltages of the vortex cords equal to the sum of their circulation. In this case, it is possible to consider all the processes occurring inside each device used in water treatment processes.

Subject of the study: local water treatment equipment in industrial water supply systems.

Materials and methods: To assess the performance of existing and newly developed wastewater treatment systems, quantitative and qualitative indicators of their treatment were used, which made it possible to select the optimal solution for the operation of water recycling systems.

Results: modeling of wastewater supply systems with ascending and descending flows, in pressure systems, allows to reduce the hydraulic load, reduce resistance and ensure modeling of hydraulic phenomena under the prevailing action of gravity of the water flow

Conclusions: Taking into account the action of forces on each particle, according to Stokes' law, a relationship was established between the hydromechanical parameters of impurity particles of aqueous solutions (effective diameter, electrokinetic zeta potential, electrophoretic velocity, number of particles). According to the theory of electrophoresis and sedimentation developed by Smoluchowski and Gückel, Stokes' theorem, all processes occurring inside each device of local water purification equipment are considered, for the circulation of velocity is performed around the vortex cord directly on the surface of the vortex tube.

Key words: devices, local equipment, electroflotation, electrocoagulation, elementary circulation, vortex arrangement, liquid velocity,

The work was carried out within the framework of the State order for the provision of public services (performance of works) **No. 075-03-2025-**418 dated 17.01.2025 "Innovative technologies for the use of water and water resources in water recycling systems" (FRRS **2023-0039**)"