FEATURES OF BIOCHEMICAL BLOOD PARAMETERS CHANGES IN RATS UNDER DIFFERENT EXPERIMENTAL MODELS OF ALLOXAN-INDUCED DIABETES
Abstract and keywords
Abstract (English):
The necessity of modern research lies in the use of reliable experimental models of diabetes mellitus (DM) in animals, both for understanding the pathogenesis of the disease and for developing new pharmacological and non-pharmacological treatment methods. In experimental practice, the chemical model of DM, including the use of alloxan, is the most widespread. This model induces pronounced metabolic disorders in rats, accompanied by a persistent increase in blood glucose levels. Objective of the study: to identify the features of biochemical changes in the blood of rats with alloxan-induced DM in different experimental models. Alloxan-induced diabetes was induced in male Wistar rats (n=71) of average weight (272.32±22.70 g) and age (150.00±12.00 days) by intraperitoneal administration of alloxan monohydrate at doses of 150 mg/kg (2-All150; n=29), 200 mg/kg (3-All200; n=19), and 300 mg/kg (4-All300; n=13; fractionally, 3 times, 100 mg/kg every other day). Rats in group 1 (control, n=10) received an equivalent volume of physiological saline (0.2 ml). During the development of DM, body weight and peripheral blood glucose levels (from the tail tip) were measured dynamically on days 7, 14, 21, 28, and 31. After the experiment was concluded (day 32), key biochemical parameters were measured in blood serum, including glucose, total cholesterol, high- and low-density lipoproteins, triglycerides, total protein, urea, creatinine, and C-reactive protein. The measurements were performed using an automated biochemical analyzer ERBA-XL-180 («ErbaLachema», Czech Republic) with proprietary reagent kits designed for this device. The significance of differences between groups was assessed using Dunn’s nonparametric test. The results of the study showed that the mortality rate of experimental animals depended on the dose of alloxan and the administration method (single or fractional). In the second group (All150), mortality was 44.83 %; the highest was in the third group (All200) at 47.36 %; and the lowest was in the fourth group (All300) with fractional administration at 30.77 %. One month after alloxan administration, the animals developed DM, which was accompanied by polydipsia, polyuria, hyperglycemia, ketonuria, weight loss, dulling, darkening, and shedding of fur. The maximum increase in blood glucose concentration in group 4 rats was observed at the earliest stage (day 7; 20.3 mmol/L), while in group 3 rats, it peaked on day 14 (27.4 mmol/L). Changes in the biochemical parameters of rat serum in all experimental groups indicated significant disturbances in carbohydrate, lipid, and protein metabolism. However, the severity of these changes depended on the experimental model and the alloxan dose: fractional administration of alloxan at a dose of 300 mg/kg resulted in the most pronounced metabolic disturbances, while significantly reducing mortality.

Keywords:
diabetes mellitus; experimental models; alloxan-induced diabetes; biochemical blood parameters in rats; carbohydrate, lipid, and protein metabolism.
Text
Text (PDF): Read Download
References

1. Sun H. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045 / H. Sun, P. Saeedi, S. Karuranga [et al.] // Diabetes Res. Clin. Pract. – 2022. – Vol. 183.

2. Jwad M. Types of diabetes and their effect on the immune system / M. Jwad, H. Yousif Al-Fatlawi, P. D. Student // J. Adv. Pharm. Pract. – 2022. – Vol. 4, No. 1. – P. 21–30.

3. Stanifer J. W. Prevalence, risk factors, and complications of diabetes in the Kilimanjaro region: a population-based study from Tanzania/J. W. Stanifer, C. R. Cleland, G. J. Makuka [et al.] // PLoS One.– 2016.

4. Dedov I. I. Saharnyy diabet v Rossiyskoy Federacii: rasprostranennost', zabolevaemost', smertnost', parametry uglevodnogo obmena i struktura saharosnizhayuschey terapii po dannym

5. Gati M. A. Physiological and histological study of experimental diabetes mellitus by alloxan / M. A. Gati // Int. J. Adv. Res. – 2016. – Vol. 4, No. 3. – P. 1814–1818.

6. Bafaev Zh. T. Osobennosti tipologicheskih svoystv zhivotnyh v klinicheskom techenii eksperimental'noy modeli alloksanovogo diabeta / Zh. T. Bafaev, A. A. Mavlanov, Z. N. Hamidova

7. Rashmi P. Rodent models for diabetes / P. Rashmi, A. Urmila, A. Likhit [et al.] // 3 Biotech. – 2023. – Vol. 13. – P. 80.

8. Madhariya R. Experimental animal models: tools to investigate antidiabetic activity / R. Madhariya, B. Dixena, A. Ram [et al.] // Curr. Pharm. Des. – 2023. – Vol. 29, No. 2. – P. 79–94.

9. Zaychik A. Sh. Patofiziologiya. T. 2. Osnovy patohimii / A. Sh. Zaychik, L. P. Churilov. – SPb. : Elbi-SPb., 2001. – 687 s.

10. Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes / S. Lenzen // Diabetologia. – 2008. – Vol. 51. – P. 216–226.

11. Baranov V. G. Eksperimental'nyy saharnyy diabet. Rol' v klinicheskoy diabetologii / V. G. Baranov, I. M. Sokoloverova, E. G. Gasparyan [i dr.]. – L. : Nauka, 1983. – 240 s.

12. Danilova I. G. Sposob modelirovaniya alloksanovogo diabeta / I. G. Danilova, I. F. Gette: Patent na izobretenie № 2534411; zayavl. 27.11.2014; opubl. 27.11.2014. – Byul. № 33.

13. El'bek'yan K. S. Osobennosti protekaniya alloksan-inducirovannogo saharnogo diabeta u eksperimental'nyh krys/K. S. El'bek'yan, A. B. Hodzhayan, F. A. Bidzhieva [i dr.] // Medicinskiy vestnik

14. Fajarwati I. Administration of alloxan and streptozotocin in Sprague Dawley rats and the challenges in producing diabetes model / I. Fajarwati, D. D. Solihin, T. Wresdiyati, I. Batubara // IOP Conf. Ser.: Earth

15. Bidzhieva F. A. Biohimicheskie osobennosti alloksan inducirovannogo saharnogo diabeta / F. A. Bidzhieva // Medicinskiy alfavit. – 2018. – T. 31, № 2. – S. 12–14.

16. Behr G. A. Pancreas b-cells morphology, liver antioxidant enzymes and liver oxidative parameters in alloxan-resistant and alloxan-susceptible Wistar rats: a viable model system for the study

17. Zakir'yanov A. R. Diabeticheskie oslozhneniya u krys pri dlitel'nyh srokah modelirovaniya saharnogo diabeta 1-go tipa / A. R. Zakir'yanov, M. A. Plahotniy, N. A. Onischenko [i dr.] // Patol. fiziol.

18. Selyatitskaya V. G. Adrenocortical system activity in alloxan-resistant and alloxan-susceptible Wistar rats / V. G. Selyatitskaya, N. A. Palchikova, N. V. Kuznetsova // J. Diabetes Mellit. – 2012. – Vol. 2, No. 2.

19. Elsner M. Importance of the GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan / M. Elsner, M. Tiedge, B. Guldbakke [et al.] // Diabetologia. – 2002. – Vol. 45, No. 11. – P. 1542–1549.

20. Pal'chikova N. A. Gormonal'no-biohimicheskie osobennosti alloksanovoy i streptozotocinovoy modeley eksperimental'nogo diabeta / N. A. Pal'chikova, N. V. Kuznecova, O. I. Kuz'minova,

21. Radenković M. Experimental diabetes induced by alloxan and streptozotocin: the current state of the art / M. Radenković, M. Stojanović, M. Prostran // J. Pharmacol. Toxicol. Methods. – 2016. – Vol. 78.

22. Toropova A. A. Vliyanie kompleksnogo fitosredstva na uglevodnyy obmen, morfofunkcional'noe sostoyanie podzheludochnoy zhelezy pri eksperimental'nom alloksan-inducirovannom

23. Ral'chenko I. V. Vliyanie metformina i insulina na metabolicheskie narusheniya pri alloksanovom diabete / I. V. Ral'chenko, S. Shilali, S. N. Tolstoguzov // Sibirskoe medicinskoe obozrenie.

24. Blinkova N. B. Modulyaciya makrofaga kak faktor regulyacii regeneratornyh processov v pecheni krys s alloksanovym diabetom / N. B. Blinkova, I. G. Danilova, M. T. Abidov // Geny i Kletki. – 2017.

25. Barcham D. An improved color reagent for the determination of blood glucose by the oxidase systeme / D. Barcham, P. Trinder // Analyst. – 1972. – Vol. 97, No. 151. – P. 142–145.

26. Allain C. Enzymatic determination of total serum cholesterol / C. Allain, L. Poon, G. Chan [et al.] // Clin. Chem. – 1974. – Vol. 20, No. 4. – P. 470–475.

27. Roeschlau P. Enzymatische Bestimmung des Gesampt-Cholesterins in serum / P. Roeschlau, E. Bernt, W. A. Gruber // Clin. Chem. Clin. Biochem. – 1974. – Vol. 12, No. 5. – P. 226–227.

28. Nauk M. Measurement of high-density-lipoprotein cholesterol / M. Nauk, D. Wiebe, G. Warnick // Handbook of lipoprotein testing. – 2nd ed. – Washington DC: AACC Press, 2001. – P. 221–244.

29. Klimov A. N. Obmen lipidov i lipoproteidov i ego narusheniya / A. N. Klimov. – SPb.: Piter, 1999. – 512 s.

30. Cornall A. G. Determination of serum proteins by means of the biuret reaction / A. G. Cornall, C. J. Bardawill, M. M. David // J. Biol. Chem. – 1949. – Vol. 177, No. 2. – P. 751–766.

31. Burtis C. A. Tietz textbook of clinical chemistry and molecular diagnostics / C. A. Burtis, E. R. Ashwood, D. E. Bruns. – 5th ed. – St. Louis: Elsevier, 2012.

32. Claus D. R. Radioimmunoassay of human C-reactive protein and levels in normal sera / D. R. Claus, A. P. Osmand, H. Gewurz // J. Lab. Clin. Med. – 1976. – Vol. 87. – P. 120–128.

33. Hind C. R. H. The role of serum C-Reactive protein (CRP) measurement in clinical practice / C. R. H. Hind, M. B. Pepys // Int. Med. – 1984. – Vol. 5. – P. 112–151.

34. Makarov V. N. Spravochnik. Fiziologicheskie, biohimicheskie i biometricheskie pokazateli normy eksperimental'nyh zhivotnyh / V. N. Makarov, M. N. Makarova. – SPb.: LEMA, 2013 – 118 s.

35. Danilova I. G. Citokinovaya regulyaciya regeneratornyh processov v podzheludochnoy zheleze pri alloksanovom saharnom diabete u krys i ego korrekcii soedineniem ryada 1,3,4-tiadiazina

36. Yashanova M. I. Validnost' modeley eksperimental'nogo diabeta dlya izucheniya okislitel'nogo stressa / M. I. Yashanova, T. G. Scherbatyuk, V. Yu. Nikolaev // Zhurn. mediko-biologicheskih

37. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas / T. Szkudelski // Physiol. Res. – 2001. – No. 50. – P. 536–546.

38. Mihaylichenko V. Yu. Effekt transplantacii kul'tury kletok podzheludochnoy zhelezy pri alloksanovom saharnom diabete u krys v eksperimente / V. Yu. Mihaylichenko, S. S. Stolyarov

39. Lomaeva S. V. Osobennosti obmena biopolimerov soedinitel'noy tkani v pecheni krys s alloksanovym diabetom / S. V. Lomaeva, I. F. Gette, T. S. Bulavinceva [i dr.] // Byulleten'

40. Klinicheskaya laboratornaya diagnostika (metody i traktovka laboratornyh issledovaniy) / pod red. V. S. Kamyshnikova. – M.: MEDpress-inform, 2015. – 720 s.

41. Mistry J. Antidiabetic activity of mango peel extract and mangiferin in alloxan-induced diabetic rats / J. Mistry, M. Biswas, S. Sarkar [et al.] // Futur. J. Pharm. Sci. – 2023. – Vol. 9. – P. 22.

42. Rye K. A. Antiinflammatory actions of HDL: a new insight / K. A. Rye, P. J. Barter // Arterioscler. Thromb. Vasc. Biol. – 2008. – Vol. 28. – P. 1890–1891.

43. Smith J. D. Dysfunctional HDL as a diagnostic and therapeutic target / J. D. Smith // Arterioscler. Thromb. Vasc. Biol. – 2010. – Vol. 30. – P. 151–155.

44. Kontush A. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities / A. Kontush, M. J. Chapman // Curr. Opin. Lipidol. – 2010. – Vol. 21. – P. 312–318.

45. Souza J. A. Small, dense HDL 3 particles attenuate apoptosis in endothelial cells: pivotal role of apolipoprotein A-I / J. A. Souza [et al.] // J. Cell. Mol. Med. – 2010. – Vol. 14. – P. 608–620.

46. Van L. S. High-density lipoprotein at the interface of type 2 diabetes mellitus and cardiovascular disorders / L. S. Van [et al.] // Curr. Pharm. Des. – 2010. – Vol. 16. – P. 1504–1516.

47. Andreychenko I. A. Informativnost' izmeneniy biohimicheskih parametrov syvorotki krovi pri saharnom diabete 2-go tipa / I. A. Andreychenko, S. D. Galkin // Vestnik novyh medicinskih

48. Borodin E. A. Biohimiya i klinicheskaya laboratornaya diagnostika / E. A. Borodin. – Blagoveschensk : Amurskaya GMA Minzdrava Rossii, 2021.

49. Harita N. Lower serum creatinine is a new risk factor of type 2 diabetes: the Kansai healthcare study / N. Harita, T. Hayashi, K. K. Sato [et al.] // Diabetes Care. – 2009. – Vol. 32. – P. 424–426.

50. Lorenzo C. Risk of type 2 diabetes among individuals with high and low glomerular filtration rates / C. Lorenzo, S. D. Nath, A. J. Hanley [et al.] // Diabetologia. – 2009. – Vol. 52. – P. 1290–1297.

51. Hjelmeszhth J. Low serum creatinine is associated with type 2 diabetes in morbidly obese women and men: a cross-sectional study / J. Hjelmeszhth, J. Rshislien, N. Nordstrand [et al.] // BMC Endocr. Disord. – 2010.

52. Bueverov A. O. Porazhenie pecheni pri saharnom diabete 1-go tipa / A. O. Bueverov, A. V. Zilov // Rossiyskiy zhurnal gastroenterologii, gepatologii, koloproktologii. – 2021. – T. 31, № 2.

53. Jiang S. Hepatic functional and pathological changes of type 1 diabetic mice in growing and maturation time / S. Jiang, X. Tang, K. Wang [et al.] // J. Cell. Mol. Med. – 2019. – Vol. 23, № 8. – P. 5794–5807.

54. Borisov A. G. Diabeticheskaya nefropatiya: sovremennye principy klassifikacii, diagnostiki i osobennosti saharosnizhayuschey terapii / A. G. Borisov, S. V. Chernavskiy, M. A. Smirnova

55. Blinkova N. B. Reakciya immunokompetentnyh kletok na strukturnye povrezhdeniya pochki pri eksperimental'nom alloksanovom diabete / N. B. Blinkova, I. G. Danilova, I. F. Gette,

56. Heier M. Inflammation in childhood type 1 diabetes; influence of glycemic control / M. Heier, H. D. Margeirsdottir, C. Brunborg [et al.] // Atherosclerosis. – 2015. – Vol. 238, № 1. – P. 33–37.

57. Suryadinata R. V. Effectiveness of Lime Peel Extract (Citrus aurantifolia Swingle) against C-Reactive Protein Levels in Alloxan-Induced Wistar Rats / R. V. Suryadinata, A. Lorensia, K. Sefania // Glob. Med.

58. Asmat U. Diabetes mellitus and oxidative stress—a concise review / U. Asmat, K. Abad, K. Ismail // Saudi Pharm. J. – 2016. – Vol. 24, № 5. – P. 547–553.

59. Richardson S. J. The Prevalence of Enteroviral Capsid Protein Vp1 Immunostaining in Pancreatic Islets in Human Type 1 Diabetes / S. J. Richardson, A. Willcox, A. J. Bone, A. K. Foulis, N. G. Morgan

60. Sproston N. R. Role of C-reactive protein at sites of inflammation and infection / N. R. Sproston, J. J. Ashworth // Front. Immunol. – 2018. – Vol. 9. – P. 754.

61. Artasensi A. Type 2 Diabetes Mellitus: A Review of Multi-Target Drugs / A. Artasensi, A. Pedretti, G. Vistoli, L. Fumagalli // Molecules. – 2020. – Vol. 25, № 8. – P. 1987.

62. Marton L. T. The Effects of Curcumin on Diabetes Mellitus: A Systematic Review / L. T. Marton, L. M. Pescinini-E-Salzedas, M. E. C. Camargo [et al.] // Front. Endocrinol. – 2021. – Vol. 12. – P. 669448.

63. Chiavaroli L. Effect of low glycaemic index or load dietary patterns on glycaemic control and cardiometabolic risk factors in diabetes: systematic review and meta-analysis of randomised controlled trials

64. Brevetti G. Endothelial dysfunction: a key to the pathophysiology and natural history of peripheral arterial disease? / G. Brevetti, V. Schiano, M. Chiariello // Atherosclerosis. – 2008. – Vol. 197. – P. 1–11.

65. Sima A. V. Vascular endothelium in atherosclerosis / A. V. Sima, C. S. Stancu, M. Simionescu // Cell Tissue Res. – 2009. – Vol. 335, № 1. – P. 191–203.

66. Ho K. L. Metabolic, structural and biochemical changes in diabetes and the development of heart failure / K. L. Ho, Q. G. Karwi, D. Connolly [et al.] // Diabetologia. – 2022. – Vol. 65. – P. 411–423.

Login or Create
* Forgot password?