Russian Federation
The review is devoted to the pathogenesis of uremic encephalopathy. An analysis of experimental and clinical studies, clinical guidelines, literature reviews from the eLIBRARY, Springer, Pubmed, Google Scholar databases was conducted using the terms: chronic kidney disease, pathogenesis, blood-brain barrier, urea, dysbiosis, encephalopathy, review. Chronic kidney disease is a common and long-term disease characterized by a gradual loss of kidney structure and function. Kidney dysfunction leads to accumulation, including protein-bound uremic toxins, which are poorly excreted by renal replacement therapy. This systemic retention of toxic metabolites, known as uremic syndrome, affects other organs and systems. The diagnosis of uremic encephalopathy is often based on a retrospective assessment of the patient’s condition, and the corresponding defining clinical and laboratory parameters are not yet used in routine studies. Complications develop due to hemodynamic disturbances and dysfunction of the blood-brain barrier, changes in the intestinal microbiome, and the reverse effect of urea. Uremic toxins can have an indirect effect on the brain through vascular dysfunction and hemostasis, as well as a direct effect - toxicity for neuronal cells, neuroinflammation and oxidative stress for glial cells and disruption of the blood-brain barrier. Anther way, during the hemodialysis procedure, delayed equilibration of the urea level between blood and cerebrospinal fluid leads to cerebral edema and the appearance of neurological disorders. The composition of the microbiome and the intestinal environment in chronic kidney disease, undergo changes and dysbiosis is formed, which leads to increased protein fermentation and a subsequent increase in the concentration of uremic toxins.
encephalopathy, pathogenesis, blood-brain barrier, urea, dysbiosis, chronic kidney disease, review
1. Webster A. C., Nagler E. V., Morton R. L., Masson P. Chronic Kidney Disease. Lancet. 2017;389(10075):1238-1252. doihttps://doi.org/10.1016/S01406736(16)32064-5.
2. Baumgaertel M. W., Kraemer M., Berlit P. Neurologic complications of acute and chronic renal disease. Handb Clin Neurol. 2014;119:383-93. doi:https://doi.org/10.1016/B978-0-7020-4086-3.00024-2.
3. Lohia S., Vlahou A., Zoidakis J. Microbiome in Chronic Kidney Disease (CKD): An Omics Perspective. Toxins (Basel). 2022;14(3):176. doi:https://doi.org/10.3390/toxins14030176.
4. Hamed S. A. Neurologic conditions and disorders of uremic syndrome of chronic kidney disease: presentations, causes, and treatment strategies. Expert Rev Clin Pharmacol. 2019;12(1):6190.
5. Rosner M. H., Husain-Syed F., Reis T., Ronco C., Vanholder R. Uremic encephalopathy. Kidney Int. 2022;101(2):227-241. doi:https://doi.org/10.1016/j. kint.2021.09.025.
6. Jankowski J., Floege J., Fliser D., Böhm M., Marx N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation. 2021;143(11):1157-1172.
7. Greco F., Buoso A., Cea L., D’Andrea V., Bernetti C., Beomonte Zobel B., Mallio C. A. Magnetic Resonance Imaging in Uremic Encephalopathy: Identifying Key Imaging Patterns and Clinical Correlations. J Clin Med. 2024;
8. Jabbari B., Vaziri N. D. The nature, consequences, and management of neurological disorders in chronic kidney disease. Hemodial Int. 2018;22(2):150-160. doihttps://doi.org/10.1111/hdi.12587.
9. Greenberg K. I., Choi M. J. Hemodialysis Emergencies: Core Curriculum 2021. Am J Kidney Dis. 2021;77(5):796-809. doihttps://doi.org/10.1053/j. ajkd.2020.11.024.
10. Viggiano D., Wagner C. A., Martino G., Nedergaard M., Zoccali C., Unwin R., Capasso G. Mechanisms of cognitive dysfunction in CKD. Nat Rev Nephrol. 2020;16(8):452-469. doi:10.1038/ s41581-020-0266-9.
11. Lizarazo D. A., Lizarazo J. Uremic Encephalopathy. Radiology. 2023;307(1):e221602. doihttps://doi.org/10.1148/radiol.221602.
12. Tanaka S., Okusa M. D. Crosstalk between the nervous system and the kidney. Kidney Int. 2020;97(3):466-476. doihttps://doi.org/10.1016/j.kint.2019.10.032.
13. Nishi E. E., Bergamaschi C. T., Campos R. R. The crosstalk between the kidney and the central nervous system: the role of renal nerves in blood pressure regulation. Exp Physiol. 2015;100(5):47984.
14. Assem M., Lando M., Grissi M., Kamel S., Massy Z. A., Chillon J. M., Hénaut L. The Impact of Uremic Toxins on Cerebrovascular and Cognitive Disorders. Toxins (Basel). 2018;10(7):303. doihttps://doi.org/10.3390/toxins10070303.
15. Liabeuf S., Pepin M., Franssen C. F. M., Viggiano D., Carriazo S., Gansevoort R. T., Gesualdo L., Hafez G., Malyszko J., Mayer C., Nitsch D., Ortiz A., Pešić V., Wiecek A., Massy Z. A.; CONNECT Action (Cognitive Decline in
16. Lowenstein J., Grantham J. J. Residual renal function: a paradigm shift. Kidney Int. 2017;91(3):561-565. doihttps://doi.org/10.1016/j.kint.2016.09.052.
17. Masereeuw R., Verhaar M. C. Innovations in approaches to remove uraemic toxins. Nat Rev Nephrol. 2020;16(10):552-553. doihttps://doi.org/10.1038/s41581020-0299-0.
18. Abbott N. J., Patabendige A. A., Dolman D. E., Yusof S. R., Begley D. J. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):1325. doihttps://doi.org/10.1016/j.nbd.2009.07.030.
19. Morris M. E., Rodriguez-Cruz V., Felmlee M. A. SLC and ABC Transporters: Expression, Localization, and Species Differences at the BloodBrain and the Blood-Cerebrospinal Fluid Barriers. AAPS J. 2017;19(5):1317-1331.
20. Six I., Gross P., Rémond M. C., Chillon J. M., Poirot S., Drueke T. B., Massy Z. A. Deleterious vascular effects of indoxyl sulfate and reversal by oral adsorbent AST-120. Atherosclerosis. 2015;243(1):248-56. doihttps://doi.org/10.1016/j.
21. Kamiński T. W., Pawlak K., Karbowska M., Myśliwiec M., Pawlak D. Indoxyl sulfate - the uremic toxin linking hemostatic system disturbances with the prevalence of cardiovascular disease in patients with chronic kidney
22. Adesso S., Magnus T., Cuzzocrea S., Campolo M., Rissiek B., Paciello O., Autore G., Pinto A., Marzocco S. Indoxyl Sulfate Affects Glial Function Increasing Oxidative Stress and Neuroinflammation in Chronic Kidney Disease: 23. Li L. C., Chen W. Y., Chen J. B., Lee W. C., Chang C. C., Tzeng H. T., Huang C. C., Chang Y. J., Yang J. L. The AST-120 Recovers Uremic Toxin Induced Cognitive Deficit via NLRP3 Inflammasome Pathway in Astrocytes
23. Bobot M., Thomas L., Moyon A., Fernandez S., McKay N., Balasse L., Garrigue P., Brige P., Chopinet S., Poitevin S., Cérini C., Brunet P., DignatGeorge F., Burtey S., Guillet B., Hache G. Uremic Toxic Blood-Brain Barrier
24. Hernandez L., Ward L.J., Arefin S., Ebert T., Laucyte-Cibulskiene A.; GOING-FWD Collaborators; Heimbürger O., Barany P., Wennberg L., Stenvinkel P., Kublickiene K. Blood-brain barrier and gut barrier dysfunction in chronic
25. Sato E., Saigusa D., Mishima E., Uchida T., Miura D., Morikawa-Ichinose T., Kisu K., Sekimoto A., Saito R., Oe Y., Matsumoto Y., Tomioka Y., Mori T., Takahashi N., Sato H., Abe T., Niwa T., Ito S. Impact of the Oral
26. Karbowska M., Hermanowicz J. M., Tankiewicz-Kwedlo A., Kalaska B., Kaminski T. W., Nosek K., Wisniewska R. J., Pawlak D. Neurobehavioral effects of uremic toxin-indoxyl sulfate in the rat model. Sci Rep.2020;10(1):9483.
27. Wakamatsu T., Yamamoto S., Yoshida S., Narita I.. Indoxyl Sulfate-Induced Macrophage Toxicity and Therapeutic Strategies in Uremic Atherosclerosis. Toxins (Basel). 2024;16(6):254. doihttps://doi.org/10.3390/toxins16060254.
28. Lin Y. T., Wu P. H., Tsai Y. C., Hsu Y.L., Wang H. Y., Kuo M. C., Kuo P. L., Hwang S. J. Indoxyl Sulfate Induces Apoptosis Through Oxidative Stress and Mitogen-Activated Protein Kinase Signaling Pathway Inhibition in
29. Vijay K., Neuen B. L., Lerma E.V. Heart Failure in Patients with Diabetes and Chronic Kidney Disease: Challenges and Opportunities. Cardiorenal Med. 2022;12(1):1-10. doihttps://doi.org/10.1159/000520909.
30. Lu R., Kiernan M.C., Murray A., Rosner M. H., Ronco C. Kidney-brain crosstalk in the acute and chronic setting. Nat Rev Nephrol. 2015;11(12):70719. doihttps://doi.org/10.1038/nrneph.2015.131.
31. Karunaratne K., Taube D., Khalil N., of renal dialysis and transplantation. Pract Neurol. 2018;18(2):115-125. doi:10.1136/ practneurol-2017-001657.
32. Mistry K. Dialysis disequilibrium syndrome prevention and management. Int J Nephrol Renovasc Dis. 2019;12:69-77. doihttps://doi.org/10.2147/IJNRD.S165925.
33. Parsons A. D., Sanscrainte C., Leone A., Griepp D. W., Rahme R. Dialysis Disequilibrium Syndrome and Intracranial Pressure Fluctuations in Neurosurgical Patients Undergoing Renal Replacement Therapy: Systematic
34. Evans A. R., Zhao X., Ernst G. L., Ortiz-Garcia J., Dunn I. F., Burke J. Dialysis disequilibrium syndrome in neurosurgery: literature review and illustrative case example. Geroscience. 2024;46(6):5431-5437.
35. Hobby G. P., Karaduta O., Dusio G. F., Singh M., Zybailov B. L., Arthur J. M. Chronic kidney disease and the gut microbiome. Am J Physiol Renal Physiol. 2019;316(6):F1211-F1217. doi:10.1152/ ajprenal.00298.2018.
36. Cigarran Guldris S., González Parra E., Cases Amenós A. Gut microbiota in chronic kidney disease. Nefrologia. 2017;37(1):9-19. English, Spanish. doi:https://doi.org/10.1016/j.nefro.2016.05.008.
37. Valdes A. M., Walter J., Segal E., Spector T. D. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179. doi:https://doi.org/10.1136/bmj.k2179.
38. Duttaroy A. K. Role of gut microbiota and their metabolites on atherosclerosis, hypertension and human blood platelet function: a review. Nutrients. 2021;13(1):144. doihttps://doi.org/10.3390/nu13010144.
39. Glorieux G., Gryp T., Perna A. Gut-derived metabolites and their role in immune dysfunction in chronic kidney disease. Toxins (Basel). 2020;12(4):245. doihttps://doi.org/10.3390/toxins12040245.
40. Mihajlovic M., Krebber M. M., Yang Y., Ahmed S., Lozovanu V., Andreeva D., Verhaar M. C., Masereeuw R. Protein-bound uremic toxins induce reactive oxygen species-dependent and inflammasome-mediated il-1βproduction
41. Gong J., Noel S., Pluznick J. L., Hamad A. R. A., Rabb H. Gut microbiota-kidney cross-talk in acute kidney injury. Semin Nephrol. 2019;39(1):107116. doi:https://doi.org/10.1016/j.semnephrol.2018.10.009.
42. Yang J., Kim C. J., Go Y. S., Lee H. Y., Kim M. G., Oh S.W., Cho W. Y., Im S. H,. Jo S. K. Intestinal microbiota control acute kidney injury severity by immune modulation. Kidney Int. 2020;98(4):932946.
43. Noel S., Martina-Lingua M. N., Bandapalle S., Pluznick J., Hamad A. R., Peterson D. A., Rabb H. Intestinal microbiota-kidney cross talk in acute kidney injury and chronic kidney disease. Nephron Clin Pract. 2014;127(1-4):139-
44. Saranya G. R., Viswanathan P. Gut microbiota dysbiosis in AKI to CKD transition. Biomed Pharmacother. 2023;161:114447. doihttps://doi.org/10.1016/j. biopha.2023.114447.
45. Vaziri N. D., Wong J., Pahl M., Piceno Y. M., Yuan J., DeSantis T. Z., Ni Z., Nguyen T. H., Andersen G. L. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83(2):308-15. doihttps://doi.org/10.1038/ki.2012.345.
46. Wong J., Piceno Y. M., DeSantis T. Z., Pahl M., Andersen G. L., Vaziri N. D. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in
47. Rysz J., Franczyk B., Ławiński J., Olszewski R., Ciałkowska-Rysz A., Gluba-Brzózka A. The impact of CKD on uremic toxins and gut microbiota. Toxins (Basel). 2021;13(4):252. doi:10.3390/ toxins13040252.
48. Hida M., Aiba Y., Sawamura S., Suzuki N., Satoh T., Koga Y. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to
49. Wang X., Yang S., Li S., Zhao L., Hao Y., Qin J., Zhang L., Zhang C., Bian W., Zuo L., Gao X., Zhu B., Lei X. G., Gu Z., Cui W., Xu X., Li Z., Zhu B., Li Y., Chen S., Guo H., Zhang H., Sun J., Zhang M., Hui Y., Zhang X., Liu X.,
50. Moco S., Martin F. P., Rezzi S. Metabolomics view on gut microbiome modulation by polyphenolrich foods. J Proteome Res. 2012;11(10):4781-90. doi:https://doi.org/10.1021/pr300581s.
51. Hugon P., Ramasamy D., Lagier J. C., Rivet R., Couderc C., Raoult D., Fournier P. E. Non contiguous-finished genome sequence and description of Alistipes obesi sp. nov. Stand Genomic Sci. 2013;7(3):427-39.
52. Dawson L. F., Stabler R. A., Wren B. W. Assessing the role of p-cresol tolerance in Clostridium difficile. J Med Microbiol. 2008;57(Pt 6):745-749. doi:https://doi.org/10.1099/jmm.0.47744-0.
53. Vaziri N. D., Goshtasbi N., Yuan J., Jellbauer S., Moradi H., Raffatellu M., Kalantar-Zadeh K. Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium. Am J Nephrol.
54. Nakabayashi I., Nakamura M., Kawakami K., Ohta T., Kato I., Uchida K., Yoshida M. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol Dial Transplant.
55. Joossens M., Faust K., Gryp T., Nguyen A.T.L., Wang J., Eloot S., Schepers E., Dhondt A., Pletinck A., Vieira-Silva S., Falony G., Vaneechoutte M., Vanholder R., Van Biesen W., Huys G. R. B., Raes J., Glorieux G. Gut
56. Ramezani A., Raj D. S. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014;25(4):657-70. doi: 10.1681/ ASN.2013080905.
57. Ritz E. Intestinal-renal syndrome: mirage or reality? Blood Purif. 2011;31(1-3):70-6. doihttps://doi.org/10.1159/000321848.
58. Sabatino A., Regolisti G., Brusasco I., Cabassi A., Morabito S., Fiaccadori E. Alterations of intestinal barrier and microbiota in chronic kidney disease. Nephrol Dial Transplant. 2015;30(6):924-33. doihttps://doi.org/10.1093/ndt/gfu287.
59. de Almeida Duarte J. B., de AguilarNascimento J. E., Nascimento M., Nochi R. J. Jr. Bacterial translocation in experimental uremia. Urol Res. 2004;32(4):266-70. doihttps://doi.org/10.1007/s00240-0030381-7.
60. Baumgart D. C., Dignass A. U. Intestinal barrier function. Curr Opin Clin Nutr Metab Care. 2002;5(6):685-94. doihttps://doi.org/10.1097/00075197200211000-00012.
61. Vaziri N. D., Yuan J., Nazertehrani S., Ni Z., Liu S. Chronic kidney disease causes disruption of gastric and small intestinal epithelial tight junction. Am J Nephrol. 2013;38(2):99-103. doihttps://doi.org/10.1159/000353764.
62. Poesen R., Windey K., Neven E., Kuypers D., De Preter V., Augustijns P., D’Haese P., Evenepoel P., Verbeke K., Meijers B. The influence of CKD on colonic microbial metabolism. J Am Soc Nephrol. (5):1389-99.
63. Gryp T., De Paepe K., Vanholder R., Kerckhof F. M., Van Biesen W., Van de Wiele 105 T., Verbeke F., Speeckaert M., Joossens M., Couttenye M. M., Vaneechoutte M., Glorieux G. Gut microbiota generation of protein-bound



