Scientific substantiation and development of engineering solutions for the use of a multi-level electric floor heating system (MSEOP) to optimize the microclimate in livestock facilities, ensuring energy conservation and increasing animal productivity. Subject of the study the subject of research is the development and scientific justification of an energy-efficient multi-level electric floor heating system for livestock facilities, which optimizes the microclimate and increases animal productivity through automated control of thermal conditions. Materials and methods: the research is based on mathematical modeling of heat transfer processes in a multilayer enclosing structure with discrete energy sources. To analyze the operating modes of the system and control energy flows, methods of the theory of automatic regulation were used, including the construction of transfer functions and the analysis of the stability of the system according to the Nyquist criterion. Results: the design and mathematical model of a multilevel electric floor heating system are proposed, which makes it possible to ensure a set temperature regime on the floor surface by redistributing power between three tiers of heating elements. The stability of the automatic control system has been proven. Conclusions: engineering and technological solutions are scientifically sound and effective for implementation in modern construction and reconstruction of livestock complexes. The use of a multi-level electric floor heating system makes it possible to reduce specific energy consumption by 25-30% compared to general heating systems, as well as maintain temperature standards in the zone of technological activity, which ultimately increases the economic efficiency of livestock production.
microclimate, electric floor heating, multi-level heating system, mathematical modeling, optimization of parameters
1. Sel'e G. Stress bez distressa / G. Sel'e. – M.: Progress, 1979. – 123 s.
2. Krukovskiy P.G. Optimizaciya teplovogo rezhima mnogosloynyh ograzhdayuschih konstrukciy s raspredelennymi istochnikami teploty // Vestnik Belorusskoy gosud. sel'skohozyaystvennoy akademii / P.G. Krukovskiy.
3. Rozinskiy D.I. Sovershenstvovanie sistem mikroklimata na osnove lokal'nogo obogreva tehnologicheskih zon // Zootehnicheskaya nauka Belarusi / D.I. Rozinskiy. - 2017. - T. 52, № 1. - S. 121–130.
4. Rozinskiy D.I. Vliyanie parametrov mikroklimata, sozdavaemogo sistemami lokal'nogo obogreva, na fiziologicheskoe sostoyanie molodnyaka sel'skohozyaystvennyh zhivotnyh // Veterinarnaya medicina i
5. Belyaev V.I. Mikroklimat zhivotnovodcheskih pomescheniy / V.I. Belyaev. – SPb.: Lan', 2017. – 288 s.
6. Ivanov P.P. Teoriya avtomaticheskogo regulirovaniya: uchebnik dlya vuzov / P.P. Ivanov. – M.: Vysshaya shkola, 2018. – 432 s.
7. Tihomirov D.A. Teplotehnicheskiy raschet ograzhdayuschih konstrukciy / D.A. Tihomirov. – M.: ASV, 2016. – 248 s.
8. Volkov A.A. Avtomatizaciya sistem mikroklimata sel'skohozyaystvennyh ob'ektov // Mehanizaciya i elektrifikaciya sel'skogo hozyaystva / A.A. Volkov. – 2020. – № 5. – S. 29–32.
9. Shalimov M.G. Matematicheskoe modelirovanie teplovyh processov: monografiya / M.G. Shalimov. – K.: Naukova dumka, 2017. – 183 s.
10. Paton B. The use of underfloor heating for piglets: energy consumption and animal behavior // Biosystems Engineering / B. Paton, J. Frost. – 2020. – Vol. 198. – P. 119-129.
11. Besharat M. Energy efficiency and automation in livestock farming // Smart Agricultural Technology / M. Besharat, H. Ahamed. – 2022. – Vol. 3. – P. 100-108.
12. Zhang, Q. A review on heating technologies for floor-localized heating system in swine buildings // Computers and Electronics in Agriculture / Q. Zhang, G. Zhang. – 2022. – Vol. 194. – P. 106-115.



