Aim - an analysis of levels of steroid hormones in heart cell mitochondria at the stages of B16/F10 melanoma development in combination with chronic neurogenic pain in male and female C57BL/6 mice. The study included male and female C57BL/6 mice (n=336). Experimental groups were: intact animals (♂ n=21; ♀ n=21); controls (♂ n=21; ♀ n=21) with a model of chronic neurogenic pain (CNP); the comparison group (♂ n=63; ♀ n=63) with melanomas (B16/ F10); the main group (♂ n=63; ♀ n=63) (CNP+B16/F10) with melanoma transplanted 3 weeks after the CNP model creation. Levels of estradiol (pg/g protein), estrone (pg/g protein), progesterone (ng/g protein), total testosterone (ng/g protein), and free testosterone (pg/g protein) were determined by ELISA in mitochondrial samples. In animals with CNP, changes in levels of steroid hormones were detected only in heart mitochondria of female mice: estradiol was reduced by 4.6 times, estrone by 2.2 times, progesterone by 1.8 times (p˂0.05), and total testosterone by 2.4 times compared with intact values. Melanoma growth (3 weeks) in females downregulated levels of estradiol by 1.7 times (p˂0.05), estrone by 1.8 times (p˂0.05), progesterone by 2.1 times, and total testosterone by 2.3 times compared with intact values. In males, only total testosterone decreased by 2.1 times during the same period. Melanoma growth in presence of CNP (3 weeks) in females decreased levels of estradiol by 1.6 times (p˂0.05) compared with control val- ues, while males showed reduced levels of estradiol and total and free testosterone by 1.3 times (p˂0.05), 1.9 times (p˂0.05) and 2.7 times, respectively, as well as elevated levels of estrone by 1.6 times (p˂0.05). CNP and the growth of B16/F10 melanoma to a greater extent weaken the heart of females due to the involvement of a wider spectrum of hormones and a decrease in their levels in the heart mitochondria, compared to males. When CNP was combined with B16/F10 melanoma, a more significant hormonal imbalance was determined in males than in females.
cell mitochondria, heart, B16/F10 melanoma, chronic neurogenic pain, estradiol, estrone, progesterone, testosterone, mice
1. Kulinskiy V. I., Kolesnichenko L. S. Regulyaciya gormonami i signal-transduktornymi sistemami metabolicheskih i energeticheskih funkciy mitohondriy. Biomedicinskaya himiya. 2006;52(5):425-447.
2. Jia G, Aroor A. R, Sowers J. R. Chapter Nine - Estrogen and Mitochondria Function in Cardiorenal Metabolic Syndrome. In: Heinz DO (ed) Progress in Molecular Biology and Translational Science. 2014;127:229-249. doi: https://doi.org/10.1016/B978-0-12-394625- 6.00009-X.
3. Carson J. A, Manolagas S. C. Effects of sex steroids on bones and muscles: Similarities, parallels, and putative interactions in health and disease. Bone. 2015;80:67-78. doihttps://doi.org/10.1016/j.bone.2015.04.015.
4. Psarra A-M. G, Sekeris C. E. Glucocorticoid receptors and other nuclear transcription factors in mitochondria and possible functions. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2009;1787:431- 436. doihttps://doi.org/10.1016/j.bbabio.2008.11.011.
5. Klinge C. M. Estrogens regulate life and death in mitochondria. J Bioenerg Biomembr. 2017;49(4):307-324. doi:https://doi.org/10.1007/s10863-017-9704-1.
6. Zhai P, Eurell T. E, Cooke P. S, Lubahn D. B, Gross D. R. Myocardial ischemia-reperfusion injury in estrogen receptor-alpha knockout and wild-type mice. Am J Physiol Heart Circ Physiol. 2000;278:1640-1647.
7. Kampaengsri T, Ponpuak M, Wattanapermpool J, Bupha-Intr T. Deficit of female sex hormones desensitizes rat cardiac mitophagy. Chin J Physiol. 2021;64(2):72-79. doi:https://doi.org/10.4103/cjp.cjp_102_20. PMID: 33938817.
8. Qunsheng Dai, Anish A. Shah, Rachana V. Garde, Bryan A. Yonish, Li Zhang, Neil A. Medvitz, Sara E. Miller, Elizabeth L. Hansen, Carrie N. Dunn, Thomas M. Price. A Truncated Progesterone Receptor (PR-M) Localizes to the Mitochondrion and Controls Cellular Respiration. Molecular Endocrinology. 2013;27(5):741- 753, doihttps://doi.org/10.1210/me.2012-1292.
9. Bianchi V. E. Testosterone, myocardial function, and mortality. Heart Fail Rev. 2018;23:773-788. doihttps://doi.org/10.1007/s10741-018-9721-0.
10. Wang F, Yang J, Sun J, Dong Y, Zhao H, Shi H, Fu L. Testosterone replacement attenuates mitochondrial damage in a rat model of myocardial infarction. J Endocrinol. 2015;225(2):101-111. doihttps://doi.org/10.1530/JOE-14-0638.
11. Ikeda Y, Aihara K, Akaike M, Sato T, Ishikawa K, Ise T, Yagi S, Iwase T, Ueda Y, Yoshida S, Azuma H, Walsh K, Tamaki T, Kato S, Matsumoto T. Androgen receptor counteracts doxorubicin-induced cardiotoxicity in male mice. Mol Endocrinol. 2010;24(7):1338-1348. doihttps://doi.org/10.1210/me.2009-0402.
12. Sidorenko Yu. S., Franciyanc E. M., Komarova E. F., Pogorelova Yu. A., Shihlyarova A. I. Sposob polucheniya eksperimental'nyh zlokachestvennyh opuholey legkih. Patent na izobretenie RU 2375758 C1, 10.12.2009. Zayavka № 2008133091/14 ot 11.08.2008.
13. Franciyanc E. M., Kaplieva I. V., Surikova E. I., Neskubina I. V., Bandovkina V. A., Trepitaki L. K., Lesovaya N. S., Cheryarina N. D., Pogorelova Yu. A., Nemashkalova L. A. Vliyanie nokauta po genu urokinazy na rost melanomy v eksperimente.Sibirskiy nauchnyy medicinskiy zhurnal. 2019;39(4):62-70.
14. Zhukova G. I., Shihlyarova A. I., Loginova L. N., Protasova T. P. Effekty kombinirovannogo vozdeystviya nizkointensivnogo elektromagnitnogo izlucheniya millimitrovogo diapazona i kompleksov nezamenimyh aminokislot u krys-opuholenositeley starcheskogo vozrasta. Yuzhno-rossiyskiy onkologicheskiy zhurnal. 2020;1(4):38-46.
15. Kit O. I., Franciyanc E. M., Kaplieva I. V., Trepitaki L. K., Kotieva I. M. Sposob modifikacii hronicheskoy bol'yu zlokachestvennogo rosta melanomy V16 u myshey. Patent na izobretenie RU 2650587 C1, 16.04.2018. Zayavka № 2017114818 ot 26.04.2017.
16. Egorova M. V., Afanas'ev S. A. Vydelenie mitohondriy iz kletok i tkaney zhivotnyh i cheloveka: Sovremennye metodicheskie priemy. Sibirskiy medicinskiy zhurnal. 2011;26(1-1):22-28.
17. Peter Wolf, Yvonne Winhofer, Martin Krššbk, Michael Krebs. Heart, lipids and hormones. Endocr Connect. 2017;6(4):59-69. doihttps://doi.org/10.1530/EC-17-0031.
18. Martin Picard, Bruce S McEwen, Elissa S Epel, Carmen Sandi. An energetic view of stress: Focus on mitochondria. Front Neuroendocrinol. 2018;49:72-85. doihttps://doi.org/10.1016/j.yfrne.2018.01.001.
19. Midzak A, Papadopoulos V. Adrenal mitochondria and steroidogenesis: from individual proteins to functional protein assemblies. Front Endocrinol (Lausanne). 2016;7:106. doi:https://doi.org/10.3389/fendo.2016.00106.
20. Ventura-Clapier R, Moulin M, Piquereau J, Lemaire C, Mericskay M, Veksler V, Garnier A. Mitochondria: a central target for sex differences in pathologies. Clin Sci (Lond). 2017;131:803-822. doihttps://doi.org/10.1042/CS20160485.
21. Gaignard P, Liere P, Therond P, Schumacher M, Slama A, Guennoun R. Role of sex hormones on brain mitochondrial function, with special reference to aging and neurodegenerative diseases. Front Aging Neurosci. 2017;9:406. doi:https://doi.org/10.3389/fnagi.2017.00406.
22. Franciyanc E. M., Bandovkina V. A., Kaplieva I. V., Trepitaki L. K., Cheryarina N. D., Dimitriadi S. N., Przhedeckiy Yu. V. Vliyanie rosta perevivnoy melanomy v16/f10 na funkcionirovanie gipotalamo- gipofizarno-nadpochechnikovoy i tireoidnoy osey organizma u samcov i samok myshey. Izvestiya vuzov. Severo-Kavkazskiy region. Estestvennye nauki. 2017;3- 2(195-2):118-124.
23. Bandovkina V.A., Franciyanc E.M., Pogorelova Yu.A., Cheryarina N.D. Osobennosti steroidogeneza v opuholi i okruzhayuschih tkanyah pri eksperimental'noy melanome V16. Molekulyarnaya medicina. 2015;5:47-51.