POTENTIAL MARKERS OF RECURRENCY OF UROLITHIASIS DISEASE AND THE ROLE OF STONE FORMATION INHIBITORS IN RECURRENT CALCIUM OXALATE NEPHROLITHIASIS
Rubrics: REVIEWS
Abstract and keywords
Abstract (English):
Nowadays urolithiasis (nephrolithiasis) is a common disease, which treatment is a serious task of health care ser- vices not only in Russia, but throughout the world. At the same time, stones of a calcium-oxalate nature are the most common stones in patients with this pathology – in about 70-80% of cases. It is also worth noting that this disease not only has rather painful manifestations, and its treatment requires large financial costs, but also has a complex multi- factorial multistage pathogenesis, understanding the mechanisms of which can provide a key to the development of the most successful therapy. Pathogenesis itself consists of several stages, such as nucleation with the formation of a crystallization center, crystal growth, aggregation and their attachment to the surface of epithelial cells. It is known that the human body contains various substances that affect the processes of stone formation. Thus, stone formation promoters facilitate their crystallization, and inhibitors prevent it. There is a delicate balance between promoters and inhibitors, and their imbalance is often a decisive factor in pathogenesis. By their chemical nature, inhibitors can be both inorganic and organic (proteins, glycosaminoglycans) substances. The latter are especially attracting attention, since at various concentrations they can act as both inhibitors and promoters of stone formation. To fully understand the mechanisms of calcium oxalate stone formation, this review analyzes current data on inhibitors of recurrent nephrolithiasis and their role in the pathophysiology of the process of renal stone formation.

Keywords:
nephrolithiasis, inhibitors of stone formation, calcium oxalate stones, Tamm-Horsfall protein, nephrocalcin, albumin, osteopontin
Text
Publication text (PDF): Read Download
References

1. Okada A., Ando R., Taguchi K. Identification of new urinary risk markers for urinary stones using a logistic model and multinomial logit model. Clinical and Experimental Nephrology. 2019;23(5):710-716. doihttps://doi.org/10.1007/s10157- 019-01693-x.

2. Rimer J. D., Kolbach-Mandel A. M., Ward M. D., Wesson J. A. The role of macromolecules in the formation of kidney stones. Urolithiasis. 2017;45(1):57-74. doihttps://doi.org/10.1007/s00240-016-0948-8.

3. Baumann J. M., Casella R. Prevention of Calcium Nephrolithiasis: The Influence of Diuresis on Calcium Oxalate Crystallization in Urine. Advances in Preventive Medicine. 2019;2019:1-8. doi:10.1155/ 2019/3234867.

4. Baumann J. M., Affolter B. The paradoxical role of urinary macromolecules in the aggregation of calcium oxalate: a further plea to increase diuresis in stone metaphylaxis. Urolithiasis. 2016;44(4):311-317. doihttps://doi.org/10.1007/s00240-016-0863-z.

5. Alelign T, Petros B. Kidney Stone Disease: An Update on Current Concepts. Advances in Urology. 2018;2018:1-12. doihttps://doi.org/10.1155/2018/3068365.

6. Robertson W. G. Do «inhibitors of crystallisation» play any role in the prevention of kidney stones? A critique. Urolithiasis. 2017;45(1):43-56. doihttps://doi.org/10.1007/s00240-016- 0953-y.

7. Hattori C. M., Tiselius H. G., Heilberg I. P. Whey protein and albumin effects upon urinary risk factors for stone formation. Urolithiasis. 2017;45(5):421-428. doihttps://doi.org/10.1007/s00240-017-0975-0.

8. Khan S. R, Canales B. K., Dominguez-Gutierrez P. R. Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation. Native Reviews Nephrology. 2021;17(6):417-433. doi:10.1038/ s41581- 020-00392-1.

9. Tanaka Y., Okada A., Maruyama M., Tajiri R., Sugino T., Unno R., Taguchi K., Hamamoto S., Ando R., Yoshimura M., Mori Y., Kohri K., Yasui T. MP10-11 discovering spatial distribution and differential localization of protein matrix in calcium oxalate stones; a novel method of multifaceted structure analysis. Journal of Urology. 2020; 203(Supplement 4):129-130. doi:10.1097/ JU.0000000000000830.011.

10. Ajeel M. A., Al-Mahdawi Z. M. M. Evaluation The role of Trefoil Factor 1 as early stage biomarker in patients with Nephrolithiasis. Tikrit Journal of Pure Science. 2018;23(9):16-19. doihttps://doi.org/10.25130/tjps.23.2018.144.

11. Sayer J. A. Progress in Understanding the Genetics of Calcium-Containing Nephrolithiasis. Journal of American Society of Nephrology. 2017;28(3):748-759. doihttps://doi.org/10.1681/ASN.2016050576.

12. Laffite G., Leroy C., Bonhomme C., Bonhomme- Coury L., Letavernier E., Daudon M., Frochot V., Haymann J. P., Rouziire S., Lucas I. T., Bazin D., Babonneau F., Abou-Hassan A. Calcium oxalate precipitation by diffusion using laminar microfluidics: toward a biomimetic model of pathological microcalcifications. Lab on a Chip. 2016;16(7):1157-1160. doihttps://doi.org/10.1039/c6lc00197a.

13. Berger G. K., Eisenhauer J., Vallejos A., Hoffmann B., Wesson J. A. Exploring mechanisms of protein influence on calcium oxalate kidney stone formation. Urolithiasis. 2021:1-10. doihttps://doi.org/10.1007/s00240-021-01247-5.

14. Attari V. E., Maddah A., Asl Z. S., Jalili M., Ardalan M. R., Mokari S. The association of serum uromodulin with allograft function and risk of urinary tract infection in kidney transplant recipients. Journal of Renal Injury Prevention. 2021;10(1):1-6. doihttps://doi.org/10.34172/jrip.2021.02.

15. Khan A. Prevalence, pathophysiological mechanisms and factors affecting urolithiasis. International Urology and Nephrology. 2018;50(5):799-806. doi:10.1007/ s11255-018-1849-2.

16. Micanovic R., LaFavers K., Garimella P. S., Wu X. R., El-Achkar T. M. Uromodulin (Tamm-Horsfall protein): guardian of urinary and systemic homeostasis. Nephrology Dialysis Transplantation. 2020;35(1):33-43. doi:10.1093/ ndt/gfy394.

17. Schaeffer C., Devuyst O., Rampoldi L. Uromodulin: Roles in Health and Disease. Annual Review of Physiology. 2021;83:477-501. doihttps://doi.org/10.1146/annurev- physiol-031620-092817.

18. Debroise T., Sedzik T., Vekeman J., Su Y., Bonhomme C., Tielens F. Morphology of calcium oxalate polyhydrates: a quantum chemical and computational study. Crystal Growth & Design. 2020;20(6):3807-3815. doihttps://doi.org/10.1021/acs.cgd.0c00119.

19. Kelland M. A., Mady M. F., Lima-Eriksen R. Kidney stone prevention: dynamic testing of edible calcium oxalate scale inhibitors. Crystal Growth & Design. 2018;18(12):7441-7450. doi:10.1021/ acs.cgd.8b01173.

20. Blay V., Li M. C., Ho S. P., Stoller M. L., Hsieh H. P., Houston D. R. Design of drug-like hepsin inhibitors against prostate cancer and kidney stones. Acta Pharmaceutica Sinica B. 2020;10(7):1309-1320. doihttps://doi.org/10.1016/j. apsb.2019.09.008.

21. Garcna-Perdomo H. A., Solarte P. B., Espasa P. P. Pathophysiology associated with forming urinary stones. Urologna Colombiana. 2016;25(2):118-125. doihttps://doi.org/10.1016/j. uroco.2015.12.013.

22. Zhao M., Yang Y., Guo Z., Shao C., Sun H., Zhang Y., Sun Y., Liu Y., Song Y., Zhang L., Li Q., Liu J., Li M., Gao Y., Sun W. A Comparative Proteomics Analysis of Five Body Fluids: Plasma, Urine, Cerebrospinal Fluid, Amniotic Fluid, and Saliva. Proteomics - Clinical Application. 2018;12(6):1800008. doihttps://doi.org/10.1002/prca.201800008.

23. Priyadarshini, Raizada D., Kumar P., Singh T., Pruthi T., Negi A., Nigam L., Subbarao N. Exploring the modulatory effect of albumin on calcium phosphate crystallization. Current Science. 2019; 117(6):1083. doihttps://doi.org/10.18520/cs/v117/i6/1083-1089.

24. Haley W. E., Enders F. T., Vaughan L. E., Mehta R. A., Thoman M. E., Vrtiska T. J., Krambeck A. E., Lieske J. C., Rule A. D. Kidney function after the first kidney stone event. Mayo Clinic Proceedings. 2016; 91(12):1744-1752. doihttps://doi.org/10.1016/j.mayocp.2016.08.014.

25. Dobrek L. Physiological and pathophysiological implications of osteopontin and the diagnostic utility of the protein in kidney diseases. Journal of Pre-Clinical and Clinical Research. 2018;12(1):6-10. doi:10.26444/ jpccr/87075.

26. Kaleta B. The role of osteopontin in kidney diseases. Inflammation Research. 2019;68(2):93-102. doihttps://doi.org/10.1007/s00011-018-1200-5.

27. Wasgewatte Wijesinghe D. K., Mackie E. J., Pagel C. N. Normal inflammation and regeneration of muscle following injury require osteopontin from both muscle and non-muscle cells. Skelet Muscle. 2019;9(1):6. doi:10.1186/ s13395-019-0190-5.

28. Bhardwaj R., Bhardwaj A., Tandon C., Dhawan D. K., Bijarnia R. K., Kaur T. Implication of hyperoxaluria on osteopontin and ER stress mediated apoptosis in renal tissue of rats. Experimental and Molecular Pathology. 2017;102(3):384-390. doihttps://doi.org/10.1016/j.yexmp.2017.04.002.

29. Gleberzon J. S., Liao Y., Mittler S., Goldberg H. A., Grohe B. Incorporation of osteopontin peptide into kidney stone-related calcium oxalate monohydrate crystals: a quantitative study. Urolithiasis. 2019;47(5):425-440. doihttps://doi.org/10.1007/s00240-018-01105-x.

30. O’Kell A. L., Lovett A. C., Canales B. K., Gower L. B., Khan S. R. Development of a two-stage model system to investigate the mineralization mechanisms involved in idiopathic stone formation: stage 2 in vivo studies of stone growth on biomimetic Randall’s plaque. Urolithiasis. 2019;47(4):335-346. doihttps://doi.org/10.1007/s00240-018-1079-1.

31. Martelli C., Marzano V., Iavarone F., Huang L., Vincenzoni F., Desiderio C., Messana I., Beltrami P., Zattoni F., Ferraro P. M., Buchholz N., Locci G., Faa G., Castagnola M., Gambaro G. Characterization of the Protein Components of Matrix Stones Sheds Light on S100-A8 and S100-A9 Relevance in the Inflammatory Pathogenesis of These Rare Renal Calculi. Journal of Urology. 2016;196(3):911-918.doi:https://doi.org/10.1016/j.juro.2016.04.064.

32. Bennett D., Salvini M., Fui A., Cillis G., Cameli P., Mazzei M. A., Fossi A., Refini R. M., Rottoli P. Calgranulin B and KL-6 in Bronchoalveolar Lavage of Patients with IPF and NSIP. Inflammation. 2019;42(2):463-470. doi:10.1007/ s10753-018-00955-2.

33. Sohgaura A., Bigoniya P. A review on epidemiology and etiology of renal stone. American Journal of Drug Discovery and Development. 2017;7(2):54-62. doi:https://doi.org/10.3923/ajdd.2017.54.62.

34. Marques S., Santos S., Fremin K., Fogo A. B. A case of oxalate nephropathy: when a single cause is not crystal clear. American Journal of Kidney Diseases. 2017; 70(5): 722-724. doihttps://doi.org/10.1053/j.ajkd.2017.05.022.

35. Robinson T. E., Hughes E. AB., Wiseman O. J., Stapley S. A., Cox S. C., Grover L. M. Hexametaphosphate as a potential therapy for the dissolution and prevention of kidney stones. Journal of Materials Chemistry B. 2020;8(24):5215-5224. doihttps://doi.org/10.1039/d0tb00343c.

36. Felz S., Neu T. R., van Loosdrecht M. CM., Lin Y. Aerobic granular sludge contains Hyaluronic acid- like and sulfated glycosaminoglycans-like polymers. Water Research. 2020;169:115291. doihttps://doi.org/10.1016/j. watres.2019.115291.

37. Mazzucco A. Hyaluronic Acid: Evaluation of Efficacy with Different Molecular Weights. International Journal of Chemistry Research 2018;1(1):13-18. doihttps://doi.org/10.18689/ijcr-1000103 .

38. Manzoor M. A. P., Agrawal A. K., Singh B., Mujeeburahiman M., Rekha P. D. Morphological characteristics and microstructure of kidney stones using synchrotron radiation μCT reveal the mechanism of crystal growth and aggregation in mixed stones. PLoS One. 2019;3(14):e0214003. doihttps://doi.org/10.1371/journal.pone.0214003.

39. Sshnder S. L., Boye T. L., Tclle R., Dengjel J., Maeda K., Jddtteld M., Simonsen A. C., Jaiswal J. K., Nylandsted J. Annexin A7 is required for ESCRT III- mediated plasma membrane repair. Scientific Reports. 2019;9(1):1-12. doihttps://doi.org/10.1038/s41598-019-43143-4.

40. Grewal T., Rentero C., Enrich C., Wahba M., Raabe C. A., Rescher U. Annexin Animal Models-From Fundamental Principles to Translational Research. Internation Journal of Molecular Science. 2021;22(7):3439. doihttps://doi.org/10.3390/ijms22073439.

41. Bjshrklund G., Svanberg E., Dadar M., Card D. J., Chirumbolo S., Harrington D. J., Aaseth J. The Role of Matrix Gla Protein (MGP) in Vascular Calcification. Current Medical Chemistry. 2020;27(10):1647-1660. doihttps://doi.org/10.2174/0 929867325666180716104159.

42. Gheorghe S. R., Crăciun A. M. Matrix Gla protein in tumoral pathology. Medicine and Pharmacy Reports. 2016;89(3):319-21. doihttps://doi.org/10.15386/cjmed-579.

43. Ahmad S., Jan A. T., Baig M. H., Lee E. J., Choi I. Matrix gla protein: An extracellular matrix protein regulates myostatin expression in the muscle developmental program. Life Sciences. 2017;172:55-63. doihttps://doi.org/10.1016/j. lfs.2016.12.011.

44. Barrett H., O’Keeffe M., Kavanagh E., Walsh M., O’Connor E. M. Is Matrix Gla Protein Associated with Vascular Calcification? A Systematic Review. Nutrients. 2018;10(4):415. doihttps://doi.org/10.3390/nu10040415.

45. Borgen P. O., Reikeras O. Prothrombin fragment F1+2 in plasma and urine during total hip arthroplasty. Journal of Orthopaedics. 2017;14(4):475-479. doihttps://doi.org/10.1016/j.jor.2017.08.001.

46. Sassanarakkit S., Peerapen P., Thongboonkerd V. StoneMod: a database for kidney stone modulatory proteins with experimental evidence. Scientific Reports. 2020;10(1):15109. doihttps://doi.org/10.1038/s41598-020-71730-3.

47. Stober V. P., Lim Y. P., Opal S., Zhuo L., Kimata K., Garantziotis S. Inter-α-inhibitor Ameliorates Endothelial Inflammation in Sepsis. Lung. 2019;197(3):361-369. doihttps://doi.org/10.1007/s00408-019-00228-1.

48. Laube N., Klein F., Bernsmann F. Kinetics of calcium oxalate crystal formation in urine. Urolithiasis. 2017;45(2):151-157. doihttps://doi.org/10.1007/s00240-016-0900-y.

Login or Create
* Forgot password?