SCHEDULE OF CONSTRUCTION WORKS FOR SPOT CONSTRUCTION TO DETERMINE SPECIFIC DUST EMISSIONS
Abstract and keywords
Abstract (English):
Abstract. The construction industry is one of the significant sources of environmental damage. The effects of dust pollution have an impact on all stages of the building's life cycle, from the start of work on the construction site to completion, operation and demolition. Despite the fact that the stage of work implementation does not last long in comparison with other stages of the life cycle of an investment and construction project, the construction stage has a number of significant impacts on the environment. The development of the construction industry requires the comprehensive assessment and investigation of the construction site as a source of pollu-tion, identification and evaluation of all sources of dust pollution on the construction site, the processes of dust pollution propagation in an urban environment. The article offers an analysis of data on field studies of the degree of atmospheric air pollution in the territory of Rostov-on-Don, an analysis of the volume of construction dust emissions from construction works, a method for calculating control over the implementation of construction processes and the spread of dust pollution generated in the atmospheric air, indi-cators of the maximum, average daily emission concentration of fine dust PM2.5 and PM10 formed from construction production and the ability to control the level of pollution on the construction site. There are no fundamental studies on the calculation of dust emission from construction works during spot construction. Based on the field studies conducted earlier using the Handheld 3016 particle counter, data on dust emissions from construction processes under various climatic influences were obtained. Subject: analysis of data on field studies of the degree of atmospheric air dustiness in the territory of Rostov-on-Don, the volume of emissions of construction dust from construction work on construction sites in urban conditions. Materials and methods: conducting systematic measurements of the degree of dust in Rostov-on-Don using the Lighthouse Handheld 3016 IAQ manual particle counter, taking into account typical climatic, heterogeneous factors of the territory on which the city is located. Systematic monitoring of several construction sites where residential complexes similar in technology and conditions were built in the most dusty area of Rostov-on-Don and the selection of five construction sites for the development of a calendar schedule for construction and installation work, taking into account specific emissions of dust particles and climatic conditions for calculating the dust pollution factor. Results: an effective approach that can be usefully applied to the determination of dust emissions on the construction site, to calculate the gross emission of dust released on the site from construction work, daily indicators of the maximum single and average daily concentration, as well as to dust dispersion with the determination of zones exceeding the MPC indicators is the use of network modeling with further calendarization to predict these types of indicators during the design and implementation of construction production. Conclusions: based on the data obtained, it can be concluded that with the existing implemented organization and technology of work, the concentration of fine dust particles are within the MPC, but given the background concentrations of atmospheric air in Rostov-on-Don, these indicators in a particular area will exceed the permissible MPC. The process of using existing SMR models taking into account specific dust emissions, the development of a schedule of dust pollution of a specific territory taking into account natural and climatic factors and the determination of zones of excess of MPC indicators in the process of modeling the dispersion of fine dust particles beyond the fence boundaries of the construction site will make it possible to draw up a passport of environmental safety of the nearby urbanized territory during spot development. Daily determination of dust pollution indicators will allow you to adjust the schedule of construction work. Modeling the dispersion of construction dust, taking into account the direction and speed of the wind, will make it possible to monitor the zones of exceeding the MPC of the neighboring territory on a daily basis and adjust measures to extinguish dust emissions at the construction site.

Keywords:
environmental safety, protection of atmospheric air, fine dust, infill construction, dust pollution
Text
Publication text (PDF): Read Download
References

1. Kaja, Nagaraju, Stuti Goyal. Impact of construction activities on environment. International Journal of Engineering Technologies and Management Research. 2023. Vol. 10(1). Pp. 17–24. DOIhttps://doi.org/10.29121/ijetmr.v10.i1.2023.1277.

2. Amartey Ernest Laryea Nii, Onibudo Oluwasegun, Anamor Samuel Kofi et al. Dust Sources and Impact: A Review. North American Academic Research. 2022. Vol. 5. Pp. 17-37. DOIhttps://doi.org/10.5281/zenodo.7068922.

3. Carlo Rebecca, Sheehy John, Feng H Ami, Sieber K William. Laboratory Evaluation to Reduce Respirable Crystalline Silica Dust When Cutting Concrete Roofing Tiles Using a Masonry Saw. Journal of occupational and environmental hygiene. 2010. Vol.7. Pp. 245-51. DOI:https://doi.org/10.1080/15459620903579695.

4. Ali Tariq Eqani, Syed Ali Mustjab Akber Shah Eqani, Muhammad Sadiq, Tassawur Khanam. Dust Effects and Human Health. Pp. 1-15. DOI:https://doi.org/10.1007/978-3-031-21209-3_1.

5. Baglaeva E.M. Sergeev A.P, Buevich A.G. et. al. 2019. Particulate matter size distribution in air surface layer of Middle Ural and Arctic territories. Atmospheric Pollution Research. 2019. Vol. 4. Pp. 1220-1226. DOIhttps://doi.org/10.1016/j.apr.2019.02.005

6. Menzelintseva N.V, Karapuzova N.Y., Mikhailovskaya Y.S., Redhwan A.M., Efficiency of standards compliance for PM(10) and PM(2,5), International Review of Civil Engineering. 2016. Vol. 7(6). Pp. 1-8. DOI:https://doi.org/10.15866/irece.v7i6.9750.

7. Azarov V.N., Kuz'michev A.A., Nikolenko D.A., Vasil'ev A.N., Kozlovceva E.Yu. Issledovanie dispersnogo sostava pyli gorodskoy sredy // Vestnik MGSU. 2020. (15). S. 432–442. DOI:https://doi.org/10.22227/1997-0935.2020.3.432-442

8. Ilyichev, V.A., Kolchunov, V.I., Bakaeva N.V. Issues of comfort and safety of the urban environment and their solution within the framework of legislative and regulatory documents. Building and reconstruction. 2021. Vol. 94. Pp. 74-85. DOI:https://doi.org/10.33979/2073-7416-2021-94-2-74-85.

9. Hanfi M.Y.M., Yarmoshenko I. V., Seleznev A.A. Gross Alpha and Gross Beta Activity Concentrations in the Dust Fractions of Urban Surface-Deposited Sediment in Russian Cities. Atmosphere. 2021. Vol. 12(5). 1-8. DOI:https://doi.org/10.3390/atmos12050571.

10. Jinding Xing, Ye Kunhui, Zuo Jian, Jiang Weiyan. Control Dust Pollution on Construction Sites: What Governments Do in China? Sustainability. 2018. Vol. 10(8). Pp. 1-17. DOI:https://doi.org/10.3390/su10082945.

11. Nakanishi Yutaro, Kaneta Takashi, Nishino Sayaka. A Review of Monitoring Construction Equipment in Support of Construction Project Management. Frontiers in Built Environment. 2022. Vol. 7. Pp.1-11. DOI:https://doi.org/10.3389/fbuil.2021.632593.

12. Kumi Louis, Jeong Jaewook et al. Empirical Analysis of Dust Health Impacts on Construction Workers Considering Work Types. Buildings. 2022. Vol. 12. Pp. 1-15. DOI:https://doi.org/10.3390/buildings12081137.

13. Larionova Yuliya, Smirnova Elena. Substantiation of Ecological Safety Criteria in Construction Industry, and Housing and Communal Services. IOP Conference Series: Earth and Environmental Science. 2020. Vol. 543. Pp. 1-6. DOIhttps://doi.org/10.1088/1755-1315/543/1/012002.

14. Manzhilevskaya S. E. Vliyanie melkodispersnoy pyli na okruzhayuschuyu sredu pri lokal'nom stroitel'stve / S. E. Manzhilevskaya // Stroitel'stvo i rekonstrukciya. – 2020. – № 6(92). – S. 86-98. DOIhttps://doi.org/10.33979/2073-7416-2020-92-6-86-98.

15. Nezhnikova Ekaterina, Larionov Arkadiy, Smirnova Elena. Ecological risk assessment to substantiate the efficiency of the economy and the organization of construction. Human and Ecological Risk Assessment: An International Journal. 2021. Vol. 27. Pp. 1-11. DOI:https://doi.org/10.1080/10807039.2021.1949262.

16. Azarov V.N., Barikaeva N.S. and Solovyeva T.V. Monitoring of fine particulate air pollution as a factor in urban planning decisions. Procedia Engineering. 2016. Vol. 150. Pp. 2001-2007. DOI:https://doi.org/10.1016/j.proeng.2016.07.279.

17. Azarov V.N., Trokhimchyk M.K., Sidelnikova O.E., Research of dust content in the earthworks working area. Procedia Engineering. 2016. Vol. 150. Pp. 2008-2012, DOI:https://doi.org/10.1016/j.proeng.2016.07.282.

18. Strelyaeva A. B., Kalyuzhina E. A. Ekologicheskaya bezopasnost' pri provedenii zemlyanyh i stroitel'no-otdelochnyh rabot // Vestnik Volgogradskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta. Seriya: Stroitel'stvo i arhitektura. 2017. 50(69). S. 321-329.

19. Sumerkin Yu.A., Telichenko V.I., Ocenka ekologicheskoy bezopasnosti pridomovyh territoriy zhilyh rayonov.// Promyshlennoe i grazhdanskoe stroitel'stvo. 2017. (6). S. 75–79.

20. Mihaylovskaya Yu. S., Menzelinceva N. V., Karapuzova N. Yu., Laktyushin V. A., Bogomolov S. A. Nauchno-metodicheskiy podhod k opredeleniyu ekologicheskogo uscherba ot vybrosov predpriyatiy stroitel'nogo kompleksa // Vestnik Volgogradskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta. Seriya: Stroitel'stvo i arhitektura. 2016. 43(62). S. 189-198.

21. Azarov V. N., Koshkarev S. A. Povyshenie ekologicheskoy bezopasnosti stroyindustrii sovershenstvovaniem sistem obespylivaniya s ispol'zovaniem kompleksnogo dispersionnogo analiza pylevyh vybrosov // Vestnik Volgogradskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta. Seriya: Stroitel'stvo i arhitektura. 2016. 43(62). S. 161—174.

22. Ilyichev, V. A. Estimation of Indicators of Ecological Safety in Civil Engineering / V. Ilyichev, S. Emelyanov, V. Kolchunov, N. Bakayeva, S. Kobeleva. Procedia Engineering. 2015. Vol. 117. Pp. 126 -131. DOI:https://doi.org/10.1016/j.proeng.2015.08.133

23. Il'ichev V.A., Kolchunov V.I., Bakaeva N.V., Kobeleva S.A. Ocenka ekologicheskoy bezopasnosti stroitel'stva na osnove modeli polnogo resursnogo cikla. Nauchnyy vestnik Voronezhskogo GASU. Stroitel'stvo i arhitektura. 2016. (4). C. 169-176.

24. Bakaeva N.V., Kalaydo A.V. Obespechenie radiacionno-ekologicheskoy bezopasnosti ob'ektov stroitel'stva. Stroitel'stvo i rekonstrukciya. 2018. (3). S 39-45.

25. Boguslavskiy, E. I. Ocenka koncentracii i dispersnogo sostava pyli v vozduhe rabochih i obsluzhivaemyh zon / E. I. Boguslavskiy, V. N. Azarov // Bezopasnost' zhiznedeyatel'nosti. – 2005. – № 2. – S. 46-47.

26. Manzhilevskaya S.E., Morozov A.V. Razrabotka i primenenie v proektirovanii modeli lokalizacii stroitel'nogo proizvodstva s cel'yu povysheniya ekologicheskoy bezopasnosti//Vestnik Evraziyskoy nauki, 2019 №5, https://esj.today/PDF/01SAVN519.pdf

27. Manzhilevskaya S.E., Petrenko L.K., Al'shenko D.N. Organizacionno-tehnologicheskie i gradostroitel'nye meropriyatiya, napravlennye na povyshenie urovnya ekologicheskoy bezopasnosti territorii g. Rostova-na-Donu // Vestnik Evraziyskoy nauki, 2019 №4, https://esj.today/PDF/04SAVN419.pdf

28. Manzhilevskaya S.E., Petrenko L.K., Shindiyan G.A. Sistematizaciya meropriyatiy po ohrane i uluchsheniyu okruzhayuschey sredy g. Rostova-na-Donu // Vestnik Evraziyskoy nauki, 2019 №3, https://esj.today/PDF/62SAVN319.pdf

29. Azarov Valery, Manzhilevskaya Svetlana, Petrenko Lubov. The pollution prevention during the civil construction. MATEC Web of Conferences. 2018. Vol. 196(04073). Pp. 1-7. DOI:https://doi.org/10.1051/matecconf/201819604073.

30. Manzhilevskaya Svetlana, Petrenko Lubov, Azarov Valery. Vertical distribution of fine dust during construction operations. Advances in Intelligent Systems and Computing. 2021. Vol. 1259. Pp. 324–331. DOI:https://doi.org/10.1007/978-3-030-57453-6_28.

31. Manzhilevskaya Svetlana, Petrenko Lubov, Azarov Valery. Monitoring methods for fine dust pollution during construction operations. Advances in Intelligent Systems and Computing. 2021. Vol. 1259. Pp. 332–340. DOI:https://doi.org/10.1007/978-3-030-57453-6_29.

32. Postanovlenie Pravitel'stva RF ot 16.02.2008g. №87 «O sostave proektnoy dokumentacii i trebovaniyam k ih soderzhaniyu» - M.: Pravitel'stvo RF, 2008. – 84s

Login or Create
* Forgot password?