Macromycetes are the most significant component of the forest ecosystem decomposers. The process of mycogenic wood decay depends on various factors, which in turn affects the functioning of forest ecosystems. The study of mycogenic xylolysis processes in the Southern Urals (Orenburg region) began in 2000. However, during that period experiment was limited to the forest-steppe part of the region and focused on stands of natural origin. However, the majority of the region is located within the steppe zone, highlighting the relevance of similar studies in the central and southern parts of the region in stands of artificial origin. The experiment was conducted in 2019–2022; so, samples of birch, pine, elm and maple wood were laid for a period of 3 years. The studies show that the rate of mycogenic wood decay varies within the steppe zone of the Southern Urals. The highest rate of decay is characteristic for the branch litter of elm, birch, and pine, while the lowest rate is observed for the decay of maple. A wider variation in the decomposition rate was typical for samples of pine and birch. The decomposition rate of pine wood varies significantly depending on the location, while the indicators for birch wood are more uniform. The comparison of the newly obtained data with previously collected data on the rate of mycogenic xylolysis in the forests of the forest-steppe part of the region indicates that the wood decay rate in artificial plantations is slightly lower than that in natural forests, particularly in relation to pine wood decay. Thus, the intensity of mycogenic xylolysis in artificial plantations of the steppe zone of the Southern Urals is relatively high and is quite comparable to that in natural plantations. This indicates the efficient operation of the system of reducers in artificial plantings.
macromycete fungi, mycogenic xylolysis, artificial plantations, Southern Urals, Orenburg region
1. Alekseev V. A. Lesnye ekosistemy i atmosfernoe zagryaznenie. – L.: Nauka. Leningradskoe otdelenie, 1990. – 197 s.
2. Volchatova I. V., Aleksandrova G. P., Hamidullina E. A. Mikogennyy ksiloliz v usloviyah antropogennogo zagryazneniya // Lesovedenie. – 2007. – № 5. – S. 27–31.
3. Diyarova D. K. Uglerodno-kislorodnyy gazoobmen drevesnogo debrisa pri mikogennom razlozhenii: avtorof. dis. … kand. biol. nauk: 03.02.08 Ekologiya. – Ekaterinburg: Institut ekologii rasteniy i zhivotnyh UrO RAN. – 2020. – 30 s.
4. Kazarcev I. A., Roschin V. I., Solov'ev V. A. Razlozhenie uglevodov drevesiny Populus tremula i Picea abies pod deystviem ligninrazrushayuschih gribov // Mikologiya i fitopatologiya. – 2014. – T. 48, № 2. – S. 112–117.
5. Kuznecov A. A., Kapica E. A. Metodika opredeleniya zapasov i potokov ugleroda, svyazannyh s krupnymi drevesnymi ostatkami v lesah taezhnoy zony // Izvestiya Sankt-Peterburgskoy lesotehnicheskoy akademii. – 2009. – № 188. – S. 23–29.
6. Muhin V. A. Biota ksilotrofnyh bazidiomicetov Zapadno-Sibirskoy ravniny. – Ekaterinburg: Nauka, 1993. – 231 s.
7. Muhin V. A. Derevorazrushayuschie griby – sovremennaya ekologicheskaya paradigma // Bioraznoobrazie i ekologiya gribov i gribopodobnyh organizmov severnoy Evrazii. – 2015. – S. 170–173.
8. Safonov M. A. Skorost' mikogennoy destrukcii drevesiny v lesah Yuzhnogo Priural'ya // Vestnik OGU. – 2006. – 2 (52). – S. 18–21.
9. Safonov M. A., Bulgakov E. A. Vklad mikogennoy destrukcii drevesiny v formirovanie mikroklimata lesov Yuzhnogo Priural'ya // Fundamental'nye issledovaniya. – 2013. – № 10 (12). – S. 2674–2678.
10. Safonov M. A., Malenkova A. S., Rusakov A. V., Leneva E. A. Biota iskusstvennyh lesov Orenburgskogo Predural'ya. – Orenburg: OOO «Universitet», 2013. – 176 s.
11. Stepanova N. T., Muhin V. A. Osnovy ekologii derevorazrushayuschih gribov. – M.: Nauka, 1979. – 100 s. Storozhenko V. G. Uchastie derevorazrushayuschih gribov v processah destrukcii i formirovaniya lesnyh soobschestv // Hvoynye boreal'noy zony. – 2016. – T. 34, № 1–2. – S. 87–91.
12. Shorohova E. V., Kapica E. A., Kuznecov A. A. Mikogennyy ksiloliz pney i valezha v taezhnyh el'nikah // Lesovedenie. – 2009. – № 4. – S. 24–33.
13. Boddy L., Watkinson S. C. Wood decomposition, higher fungi, and their role in nutrient redistribution // Sanadian Journal of Botany. – 1995. – 73, suppl. 1, Sec. E-H. – P. 1377–1383.
14. Mukhin V. A., Voronin P. Y. Mycogenic decomposition of wood and carbon emission in forest ecosystems // Russian Journal of Ecology. – 2007. – T. 38. – S. 22–26.
15. Progar R. A., Schowalter T. D., Freitag C. M., Morrell J. J. Respiration from coarse woody debris as affected by moisture and saprotroph functional diversity in Western Oregon // Oecologia. – 2000. – T. 124, N 3. – P. 426–431.