BACTERIAL REMEDIATION AND PROSPECTS FOR ITS UTILIZATION (REVIEW)
Abstract and keywords
Abstract (English):
The escalating technogenic burden on the environment has adverse effects on ecological systems at various levels. Heavy metals significantly contribute to environmental contamination due to their strong biological impact and cumulative properties. The search for new methodological approaches to mitigate the consequences of technogenic pollution induced by heavy metals is an urgent task for ensuring the environmental sustainability of the region. Physical and chemical remediation techniques have several drawbacks, such as high costs and incomplete removal, which can lead to secondary contamination. Bacterial remediation is a highly efficient method that ensures a reduction in the level of human-induced pressure on the ecological system: bacteria – water – soil – plant – animal – human. The article examines meta-analytical data on the mechanisms of interaction between bacterial cells and metals, as well as methods of soil bioremediation and assessment of the sorption characteristics of microorganisms from the genus Bacillus sp. The results of empirical studies presented in the review demonstrate significant bioremediation potential of representatives of this group towards essential and xenobiotic elements from the group of heavy metals. Thus, the level of mercury sorption from substrates can reach up to 96.40 % of the applied concentration, lead – up to 99.5 %, cadmium – 98.3 %, arsenic – 98.3 %, nickel – 99.2 %, chromium – 95.0 %, copper – 91.8 % and zinc – 87.0 %, respectively. The research focuses on developing alternative methods that are not only highly efficient but also environmentally friendly for remediating areas affected by human-induced stress, by utilizing bacterial cell populations. The majority of the analyzed works studies use indigenous strains the tolerance to metals and sorption capacity of which are determined by their selection characteristics under conditions of excessive cationic load of metals on their environment.

Keywords:
bioremediation, biosorption, heavy metals, detoxification
Text
Publication text (PDF): Read Download
References

1. Adnan A. S. M., Abu Zeid I. M., Ahmad S. A., Halmi M. I. E., Abdullah S. R. S., Masdor N. A., Shukor M. S., Shukor M. Y. A molybdenum-reducing Bacillus sp. strain Zeid 14 in soils from Sudan that could grow on

2. Al-Gheethi A., Mohamed R., Noman E., Ismail N., Kadir O. A. Removal of heavy metal ions from aqueous solutions using Bacillus subtilis biomass pre–treated by supercritical carbon dioxide // CLEAN–Soil Air Water.

3. Alotaibi B. S., Khan M., Shamim S. Unraveling the Underlying Heavy Metal Detoxification Mechanisms of Bacillus Species // Microorganisms. – 2021. – N 9 (8). –1628 r. DOI:https://doi.org/10.3390/microorganisms9081628

4. An Q., Jin L., Deng S., Li Z., Zhang C. Removal of Mn(II) by a nitrifying bacterium Acinetobacter sp. AL-6: efficiency and mechanisms // Environmental Science and Pollution Research. – 2021. – Vol. 28. – P. 31218

5. Anderson C. R., Cook G. M. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Current Microbiology. – 2004. – N 48 (5). – P. 341–7.

6. Arifiyanto A., Apriyanti F. D., Purwaningsih P., Kalqutny S. H., Agustina D., Surtiningsih T., Shovitri M., Zulaika E. Lead (Pb) bioaccumulation; Genera Bacillus isolate S1 and SS19 as a case study // AIP Conference

7. Ayangbenro A. S., Babalola O. O. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents // International Journal of Environmental Research and Public Health. – 2017. – N 14 (1).

8. Ayangbenro A. S., Babalola O. O. Genomic analysis of Bacillus cereus NWUAB01 and its heavy metal removal from polluted soil // Scientific reports. – 2020. – N 10 (1). – P. 19660.

9. Azubuike C. C., Chikere C. B., Okpokwasili G. C. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects // World Journal of Microbiology &

10. Bai Y., Su J., Wen Q., Li G., Xue L., Huang T. Removal of tetracycline by denitrifying Mn(II)-oxidizing bacterium Pseudomonas sp. H117 and biomaterials (BMO and MBMO): Efficiency and mechanisms

11. Balamurugan D., Udayasooriyan C., Kamaladevi B. Chromium (VI) reduction by Pseudomonas putida and Bacillus subtilis isolated from contaminated soils // International Journal of Environmental Sciences. – 2014.

12. Basha S. A., Rajaganesh K. Microbial bioremediation of heavy metals from textile industry dye effluents using isolated bacterial strains // International Journal of Current Microbiology and Applied Sciences (IJCMAS).

13. Blindauer C. A.,Harrison M. D.,Robinson A. K.,Parkinson J. A., Bowness P. W.,Sadler P. J., Robinson N. J.Multiple bacteria encode metallothioneins and SmtA-like zinc fingers // Molecular Microbiology. – 2002, N 45

14. Bouchez T., Patureau D., Dabert P., Juretschko S., Doré J., Delgenès P., Moletta R., Wagner M.. Ecological study of a bioaugmentation failure // Environmental microbiology. – 2000. – Vol. 2, N 2. – P. 179–190.

15. Cai D., Rao Y., Zhan Y., Wang Q., Chen S. Engineering Bacillus for efficient production of heterologous protein: current progress, challenge and prospect // Journal of Applied Microbiology. – 2019. – N 126 (6). – P.

16. Cephidian A., Makhdoumi A., Mashreghi M., Mahmudy Gharaie M. H. Removal of anthropogenic lead pollutions by a potent Bacillus species AS2 isolated from geogenic contaminated site // International journal of

17. Chaturvedi M. K. Studies on chromate removal by chromium-resistant Bacillus sp. isolated from tannery effluent // Journal of Environmental Protection. – 2011. – Vol. 2, N 01. – P. 76–82.

18. Chen X. C., Wang Y. P., Lin Q., Shi J. Y., Wu W. X., Chen Y. X. Biosorption of copper (II) and zinc (II) from aqueous solution by Pseudomonas putida CZ1 // Colloids and Surfaces B: Biointerfaces. – 2005. – Vol. 46,

19. Chen Z., Pan X., Chen H., Lin Z., Guan X. Investigation of lead(II) uptake by Bacillus thuringiensis 016 // World Journal of Microbiology & Biotechnology. – 2015. – Vol. 31, N 11 – P. 1729–36.

20. Chikere C. B., Okpokwasili G. C., Chikere B. O. Bacterial diversity in a tropical crude oil-polluted soil undergoing bioremediation // African Journal of Biotechnology. – 2009. – Vol. 8. – P. 2535–2540.

21. Chipasa K. B., Mędrzycka K. Behavior of lipids in biological wastewater treatment processes // Journal of industrial microbiology and biotechnology. – 2006. –Vol. 33. N 8. – P. 635–645.

22. Coelho L. M., Rezende H. C., Coelho L. M., De Sousa P. A., Melo D. F., Coelho N. M. Bioremediation of polluted waters using microorganisms // Advances in Bioremediation of Wastewater and Polluted Soil. – 2015.

23. da Costa A. C. A., Duta F. P. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis // Brazilian Journal of Microbiology. – 2001. – Vol. 32. – P. 1

24. Dadrasnia A., Chuan Wei K. S., Shahsavari N., Azirun M. S., Ismail S. Biosorption potential of Bacillus salmalaya strain 139SI for removal of Cr (VI) from aqueous solution // International journal of environmental

25. Das P., Sinha S., Mukherjee S. K. Nickel bioremediation potential of Bacillus thuringiensis KUNi1 and some environmental factors in nickel removal // Bioremediation journal. – 2014. – Vol. 18, N 2. – P. 169–177.

26. Das S., Dash H. R., Chakraborty J. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants // Applied microbiology and

27. Dash H. R., Das S. Bioremediation of inorganic mercury through volatilization and biosorption by transgenic Bacillus cereus BW-03 (pPW-05) // International Biodeterioration & Biodegradation. – 2015. – Vol. 103. –

28. Dell’Anno F., Brunet C., van Zyl L. J., Trindade M., Golyshin P. N., Dell’Anno A., Ianora A., Sansone C. Degradation of hydrocarbons and heavy metal reduction by marine bacteria in highly contaminated sediments

29. Dey U., Chatterjee S., Mondal N. K. Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation // Biotechnology Reports. – 2016. – N 10. – P. 1–7.

30. Díaz A., Marrero J., Cabrera G., Coto O., Gómez J. M. Biosorption of nickel, cobalt, zinc and copper ions by Serratia marcescens strain 16 in mono and multimetallic systems // Biodegradation. – 2022a. – N 33 (1).

31. Díaz A., Marrero J., Cabrera G., Coto O., Gómez J. M. Optimization of nickel and cobalt biosorption by native Serratia marcescens strains isolated from serpentine deposits using response surface methodology

32. Dong G., Wang Y., Gong L., Wang M., Wang H., He N., Zheng Y., Li Q. Formation of soluble Cr (III) end-products and nanoparticles during Cr (VI) reduction by Bacillus cereus strain XMCr-6

33. El-Helow E. R., Sabry S. A., Amer R. M. Cadmium biosorption by a cadmium resistant strain of Bacillus thuringiensis: regulation and optimization of cell surface affinity for metal cations // BioMetals. – 2000. – N 13

34. Elshaghabee F. M., Rokana N., Gulhane R. D., Sharma C., Panwar H. Bacillus as potential probiotics: status, concerns, and future perspectives // Frontiers in microbiology. – 2017. – Vol. 8. – P. 1490.

35. Fomina M., Gadd G. M. Biosorption: current perspectives on concept, definition and application // Bioresource Technology. – 2014. – N 160. P. 3–14. DOI:https://doi.org/10.1016/j.biortech.2013.12.102.

36. Gadd G. M. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization // Current Opinion in Biotechnology. – 2000. – Vol. 11. N 3. – P. 271–279. DOI:https://doi.org/10.1016/S0958-1669(00)00095-1.

37. Gao R., Wang Y., Zhang Y., Tong J., Dai W. Cobalt (II) bioaccumulation and distribution in Rhodopseudomonas palustris // Biotechnology & Biotechnological Equipment. – 2017. – Vol. 31, N 3. – P. 527–534.

38. Gavrilescu M. Removal of heavy metals from the environment by biosorption // Engineering in Life Sciences. – 2004. – Vol. 4. – P.219–232. DOI:https://doi.org/10.1002/elsc.20040026

39. Ghosh S., Mohapatra B., Satyanarayana T., Sar P. Molecular and taxonomic characterization of arsenic (As) transforming Bacillus sp. strain IIIJ3–1 isolated from As-contaminated groundwater of Brahmaputra river

40. Green-Ruiz C., Rodriguez-Tirado V., Gomez-Gil B. Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects // Bioresour Technol. – 2008. – 99 (9). R. 3864–3870.

41. Green-Ruiz C. Mercury(II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary // Bioresource Technology. – 2006. – N 97(15). – P. 1907–11. DOI:https://doi.org/10.1016/j.biortech.2005.08.014.

42. He L. M., Tebo B. M. Surface Charge Properties of and Cu(II) Adsorption by Spores of the Marine Bacillus sp. Strain SG-1 // Applied and Environmental Microbiology. – 1998. – N 64(3). – P. 1123–9.

43. Hong H. A., Duc L. H., Cutting S. M. The Use of Bacterial Spore Formers as Probiotics // FEMS Microbiology Reviews. – 2005. – N 29(4). – P. 813–835. DOI:https://doi.org/10.1016/j.femsre.2004.12.001

44. Huang H., Zhao Y., Xu Z., Ding Y., Zhou X., Dong M. A high Mn(II)-tolerance strain, Bacillus thuringiensis HM7, isolated from manganese ore and its biosorption characteristics // PeerJ Publishing. – 2020. – N 8.

45. Huang X., Nong X., Liang K., Chen P., Zhao Y., Jiang D., Xiong J. Efficient Mn(II) removal mechanism by Serratia marcescens QZB-1 at high manganese concentration // Frontiers in Microbiology. – 2023.–N 14.– P.

46. Issazadeh K., Jahanpour N., Pourghorbanali F., Raeisi G., Faekhondeh J. Heavy metals resistance by bacterial strains // Annals of Biological Research. – 2013. – Vol. 4. – N 2. – P. 60–63.

47. Jakovljević V., Grujić S., Simić Z., Ostojić A., Radojević I. Finding the best combination of autochthonous microorganisms with the most effective biosorption ability for heavy metals removal from wastewater

48. Jiménez G., Blanch A. R., Tamames J., Rosselló-Mora R. Complete Genome Sequence of Bacillus toyonensis BCT-7112T, the Active Ingredient of the Feed Additive Preparation Toyocerin

49. Joo J. H., Hassan S. H., Oh S. E. Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus // International Biodeterioration & Biodegradation. – 2010. – Vol. 64, N 8. – P. 734–741.

50. Kaksonen A. H., Puhakka J. A. Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals // Engineering in Life Sciences. – 2007. – T. 7 (6). – P. 541–564.

51. Kamika I., Momba M. N. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater // BMC Microbiology. – 2013, N 6.

52. Kanmani P., Aravind J., Preston D. Remediation of chromium contaminants using bacteria // International journal of Environmental Science and Technology. – 2012. – N 9. P. 183–193.

53. Kapahi M., Sachdeva S. Bioremediation options for heavy metal pollution // Journal of health and pollution. – 2019. – Vol. 9. N 24 – R. 191–203.

54. Karakagh R. M., Chorom M., Motamedi H., Kalkhajeh Y. K., Oustan S. Biosorption of Cd and Ni by inactivated bacteria isolated from agricultural soil treated with sewage sludge // Ecohydrology & Hydrobiology.

55. Khan M., Ijaz M., Chotana G. A., Murtaza G., Malik A., Shamim S. Bacillus altitudinis MT422188: A potential agent for zinc bioremediation // Bioremediation Journal. – 2022. – Vol. 26, N 3. – R. 228–248.

56. Kim I. H., Choi J. H., Joo J. O., Kim Y. K., Choi J. W., Oh B. K. Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater // Journal of microbiology and biotechnology.

57. Kim S. Y., Jin M. R., Chung C. H., Yun Y. S., Jahng K. Y., Yu K. Y. Biosorption of cationic basic dye and cadmium by the novel biosorbent Bacillus catenulatus JB-022 strain

58. Kotb E. Purification and partial characterization of serine fibrinolytic enzyme from Bacillus megaterium KSK-07 isolated from kishk, a traditional Egyptian fermented food // Applied Biochemistry and Microbiology.

59. Kumawat T. K., Kumawat V., Sharma S., Kandwani N., Biyani M. Applications of EPS in environmental bioremediations // In Microbial Exopolysaccharides as Novel and Significant Biomaterials, 1st ed., Nadda A. K.,

60. Lee N. K., Kim W. S., Paik H. D. Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier // Food Science and Biotechnology. – 2019. – Vol. 28. – P. 1297–1305.

61. Liaqat I., Muhammad N., Ara C., Hanif U., Andleeb S., Arshad M., Aftab M. N., Raza C., Mubin M. Bioremediation of heavy metals polluted environment and decolourization of black liquor using microbial biofilms

62. Lin C. C., Lin H. L. Remediation of soil contaminated with the heavy metal (Cd2+) // Journal of Hazardous Materials. – 2005. – N 122 (1-2). P. 7–15. DOI:https://doi.org/10.1016/j.jhazmat.2005.02.017.

63. Liu T., Nakashima S., Hirose K., Uemura Y., Shibasaka M., Katsuhara M., Kasamo K. A metallothionein and CPx-ATPase handle heavy-metal tolerance in the filamentous cyanobacterium Oscillatoria brevis

64. Malik A. Metal bioremediation through growing cells // Environment International. – 2004. – N 30(2). P. 261–278. DOI:https://doi.org/10.1016/j.envint.2003.08.001.

65. Mangunwardoyo W., Sudjarwo T., Patria M. P. Bioremediation of effluent wastewater treatment plant Bojongsoang Bandung Indonesia using consortium aquatic plants and animals // International Journal of

66. Mani D., Kumar C. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation // International journal of environmental science

67. Mardiyono M., Sajidan S., Masykuri M., Setyono P. Bioremediation of nickel heavy metals in electroplating industrial liquid waste with Bacillus subtilis // International Conference on Science and Applied Science

68. Mishra S., Doble M. Novel chromium tolerant microorganisms: isolation, characterization and their biosorption capacity // Ecotoxicology and Environmental Safety. – 2008. – N 71 (3). – P. 874–9.

69. Miyatake M., Hayashi S. Characteristics of arsenic removal by Bacillus cereus strain W2 // Resources Processing. – 2011. – Vol. 58. – N 3. – R. 101–107. DOI:https://doi.org/10.4144/rpsj.58.101.

70. Mohamed E. A., Farag A. G. Arsenic removal from aqueous solutions by different Bacillus and Lysinibacillus species // Bioremediation Journal. – 2015. – Vol. 19. N 4. – P. 269–276.

71. Mosa K. A., Saadoun I., Kumar K., Helmy M., Dhankher O. P. Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids // Frontiers in Plant Science. – 2016. – N 7. – P. 303.

72. Muneer B., Iqbal M. J., Shakoori F. R., Shakoori A. R. Tolerance and biosorption of mercury by microbial consortia: Potential use in bioremediation of wastewater // Pakistan Journal of Zoology. – 2013. – Vol. 45.

73. Nayak A. K., Panda S. S., Basu A., Dhal N. K. Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L.

74. Nwinyi O. C., Kanu I. A., Tunde A., Ajanaku K. O. Characterization of diesel degrading bacterial species from contaminated tropical ecosystem // Brazilian Archives of Biology and Technology. – 2014. – Vol. 57. – P.

75. Ojuederie O. B., Babalola O. O. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review // International Journal of Environmental Research and Public Health (IJERPH). – 2017.

76. Oliveira A. F., Machado R. B., Ferreira A. M., Sena I. D. S., Silveira M. E., Almeida A. M. S., Braga F. S., Rodrigues A. B. L., Bezerra R. M., Ferreira I. M., Florentino A. C. Copper-Contaminated Substrate Biosorption

77. Ouattara H. G., Reverchon S., Niamke S. L., Nasser W. Regulation of the synthesis of pulp degrading enzymes in Bacillus isolated from cocoa fermentation // Food Microbiology. – 2017. – Vol. 63. – P. 255–262.

78. Oves M., Khan M. S., Zaidi A. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil // Saudi journal of biological sciences. – 2013. –

79. Öztürk A. Removal of nickel from aqueous solution by the bacterium Bacillus thuringiensis // Journal of Hazardous Materials. – 2007. – Vol. 147, N 1–2. – P. 518–523. DOI:https://doi.org/10.1016/j.jhazmat.2007.01.047.

80. Pal A., Paul A. K. Microbial extracellular polymeric substances: central elements in heavy metal bioremediation // Indian Journal of Microbiology. 2008. – N 48 (1). – P. 49–64. DOI:https://doi.org/10.1007/s12088-008-0006-5.

81. Pan J. H., Liu R. X., Tang H. X. Surface reaction of Bacillus cereus biomass and its biosorption for lead and copper ions // Journal of Environmental Sciences. – 2007. – Vol. 19, N 4. – P. 403–408.

82. Pardo R., Herguedas M., Barrado E., Vega M. Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida // Analytical and Bioanalytical Chemistry. – 2003. – Vol. 376. – P. 26–32.

83. Park D, Yun Y. S., Park J. M. The past, present, and future trends of biosorption // Biotechnol Bioproc E. – 2010. – Vol. 15. – P. 86–102. DOI:https://doi.org/10.1007/s12257-009-0199-4.

84. Pham V. H. T., Kim J., Chang S., Chung W. Bacterial biosorbents, an efficient heavy metals green clean-up strategy: Prospects, challenges, and opportunities // Microorganisms. – 2022. – Vol. 10. – P. 610.

85. Podder M. S., Majumder C. B. Biosorptive Performance of Bacillus arsenicus MTCC 4380 Biofilm Supported on Sawdust/MnFe2O4 Composite for the Removal of As(III) and As(V) // Water Conservation Science

86. Pushkar B., Sevak P., Singh A. Bioremediation treatment process through mercury-resistant bacteria isolated from Mithi river // Appl Water Sci. – 2019. – Vol. 9. – P. 117. DOI:https://doi.org/10.1007/s13201-019-0998-5.

87. Qiao W., Zhang Y., Xia H., Luo Y., Liu S., Wang S., Wang W. Bioimmobilization of lead by Bacillus subtilis X3 biomass isolated from lead mine soil under promotion of multiple adsorption mechanisms

88. Rahman A., Nahar N., Nawani N. N., Jass J., Hossain K., Saud Z. A., Saha A. K., Ghosh S., Olsson B., Mandal A. Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium, Enterobacter cloacae

89. Raj A. S., Muthukumar P. V., Bharathiraja B., Priya M. Comparative biosorption capacity of copper and chromium by Bacillus cereus // International Journal of Engineering & Technology. – 2018. – Vol. 7. – P. 442–

90. Rajesh P., Athiappan M., Paul R., Raj K. D. Bioremediation of cadmium by Bacillus safensis (JX126862), a marine bacterium isolated from mangrove sediments // International Journal of Current Microbiology

91. Rani M. J., Hemambika B., Hemapriya J., Kannan V. R. Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: a biosorption approach //African Journal of Environmental Science

92. Rigoletto M., Calza P., Gaggero E., Malandrino M., Fabbri D. Bioremediation methods for the recovery of lead-contaminated soils: A review // Applied Sciences. – 2020. – Vol. 10, N 10. – P. 3528.

93. Rodríguez-Tirado V., Green-Ruiz C., Gómez-Gil B. Cu and Pb biosorption on Bacillus thioparans strain U3 in aqueous solution: Kinetic and equilibrium studies // Chemical Engineering Journal. – 2012. – Vol. 181.

94. Rohini B., Jayalakshmi S. Bioremediation potential of Bacillus cereus against copper and other heavy metals // International Journal of Advanced Research in Biological Sciences. – 2015. – Vol. 2, N 2. – P. 200–209.

95. Sabae S. Z., Hazaa M., Hallim S. A., Awny N. M., Daboor S. M. Bioremediation of Zn+2, Cu+2 and Fe+2 using Bacillus subtilis D215 and Pseudomonas putida biovar A D225 // Bioscience Research. – 2006. – Vol. 3.

96. Şahin Y., Öztürk A. Biosorption of chromium (VI) ions from aqueous solution by the bacterium Bacillus thuringiensis // Process Biochemistry. – 2005. – Vol. 40, N 5. – P. 1895–1901. .

97. Sahoo S., Goli D. Bioremediation of lead by a halophilic bacteria Bacillus pumilus isolated from the mangrove regions of Karnataka // International Journal of Science and Research. – 2020. – Vol. 9. – P. 1337–1343.

98. Salehizadeh H., Shojaosadati S. A. Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus // Water Research. – 2003. Vol. 37, N 17. – P. 4231–4235.

99. Samarth D. P., Chandekar C. J., Bhadekar R. K. Biosorption of heavy metals from aqueous solution using Bacillus licheniformis // International Journal of Pure and Applied Sciences and Technology. – 2012.

100. Sanders M. E., Morelli L., Tompkins T. A. Sporeformers as Human Probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. // Comprehensive Reviews in Food Science and Food Safety. – 2003. – N 2 (3).

101. Saranya K., Sundaramanickam A., Shekhar S., Swaminathan S. Biosorption of mercury by Bacillus thuringiensis (CASKS3) isolated from mangrove sediments of southeast coast India

102. Sayqal A., Ahmed O. B. Advances in Heavy Metal Bioremediation: An Overview // Applied Bionics Biomechanics. – 2021. – N 5. – P. 1–8. DOI:https://doi.org/10.1155/2021/1609149.

103. Sharma B., Shukla P. Lead bioaccumulation mediated by Bacillus cereus BPS-9 from an industrial waste contaminated site encoding heavy metal resistant genes and their transporters // Journal of Hazardous

104. Sharma P. K., Balkwill D. L., Frenkel A., Vairavamurthy M. A. A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide

105. Shivaji S., Suresh K., Chaturvedi P., Dube S., Sengupta S. Bacillus arsenicus sp. nov., an arsenic-resistant bacterium isolated from a siderite concretion in West Bengal, India

106. Siddiquee S., Rovina K., Azad S. A., Naher L., Suryani S., Chaikaew P. Heavy Metal Contaminants Removal from Wastewater Using the Potential Filamentous Fungi Biomass: A Review

107. Singh N., Verma T., Gaur R. Detoxification of hexavalent chromium by an indigenous facultative anaerobic Bacillus cereus strain isolated from tannery effluent // African journal of biotechnology. – 2013. – Vol. 12,

108. Singh P. P., Chopra A. K. Removal of Zn2+ and Pb2+ using new isolates of Bacillus spp. PPS03 and Bacillus subtilis PPS04 from paper mill effluents using indigenously designed Bench-top Bioreactor

109. Sinha A., Khare S. K. Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application // Biodegradation. – 2012. – N 23 (1). – P. 25–34.

110. Srinath T., Verma T., Ramteke P. W., Garg S. K. Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria // Chemosphere. – 2002. – N 48 (4). – P. 427-435.

111. Su C. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques // Environmental Skeptics and Critics. – 2014. – Vol. 3, N 2. – P. 24.

112. Sun D., Li X., Zhang G. Biosorption of Ag(I) from aqueous solution by Bacillus licheniformis strain R08 // Applied Mechanics and Materials. – 2013. – N 295–298. – P. 129–134.

113. Suresh K., Prabagaran S. R., Sengupta S., Shivaji S. Bacillus indicus sp. nov., an arsenic-resistant bacterium isolated from an aquifer in West Bengal, India

114. Switzer Blum J., Burns Bindi A., Buzzelli J., Stolz J. F., Oremland R.S. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire

115. Takano H. The regulatory mechanism underlying light-inducible production of carotenoids in nonphototrophic bacteria // Bioscience, Biotechnology, and Biochemistry. – 2016. – Vol. 80. – P. 1264–1273.

116. Tanaka K., Takanaka S., Yoshida K. A second-generation Bacillus cell factory for rare inositol production // Bioengineered. – 2014. – Vol. 5. – P. 331–334. DOI:https://doi.org/10.4161/bioe.29897.

117. Tanmoy P., Nimai C. Environmental Arsenic and Selenium Contamination and Approaches Towards Its Bioremediation Through the Exploration of Microbial Adaptations: A Review // Pedosphere. – 2019. – Vol. 29

118. Taran M., Sisakhtnezhad S., Azin T. Biological removal of nickel (II) by sp. KL1 in different conditions: optimization by Taguchi statistical approach // Polish Journal of Chemical Technology. – 2015. – Vol. 17, N 3. –

119. Thapa B., Kc A. K., Ghimire A. A review on bioremediation of petroleum hydrocarbon contaminants in soil // Kathmandu university journal of science, engineering and technology. – 2012. – Vol. 8, N 1. – P. 164

120. Tiquia-Arashiro S. M. Lead absorption mechanisms in bacteria as strategies for lead bioremediation // Applied Microbiology and Biotechnology. – 2018. – Vol. 102. – P. 5437–5444.

121. Upadhyay K. H., Vaishnav A. M., Tipre D. R., Patel B. C., Dave S. R. Kinetics and mechanisms of mercury biosorption by an exopolysaccharide producing marine isolate Bacillus licheniformis // 3 Biotech. – 2017.

122. Vidali M. Bioremediation. an overview // Pure and applied chemistry. – 2001. – Vol. 73., N 7. – P. 1163–1172.

123. Wei W., Liu X., Sun P., Wang X., Zhu H., Hong M., Mao Z. W., Zhao J. Simple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon

124. Wierzba S. Biosorption of lead (II), zinc (II) and nickel (II) from industrial wastewater by Stenotrophomonas maltophilia and Bacillus subtilis // Polish Journal of Chemical Technology. – 2015. – Vol. 17, N 1. – P. 79

125. Wu G., Kang H., Zhang X., Shao H., Chu L., Ruan C. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities //

126. Wu J., Kang F., Wang Z., Song L., Guan X., Zhou H. Manganese removal and product characteristics of a marine manganese-oxidizing bacterium Bacillus sp. FF-1 // International Microbiology. – 2022. – N 25 (4).

127. Yang T., Chen M. L., Wang J. H. Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance // TrAC Trends in Analytical Chemistry.

128. Zabochnicka-Świątek M., Krzywonos M. Potentials of biosorption and bioaccumulation processes for heavy metal removal // Polish Journal of Environmental Studies. – 2014. – Vol. 23. – P. 551–561.

129. Zhou M., Liu Y., Zeng G., Li X., Xu W., Fan T. Kinetic and equilibrium studies of Cr (VI) biosorption by dead Bacillus licheniformis biomass // World Journal of Microbiology and Biotechnology. – 2007. – Vol. 23. –

130. Zouboulis A. I., Loukidou M. X., Matis K. A. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils // Process biochemistry. – 2004. – Vol. 39, N 8. – P. 909–916.

Login or Create
* Forgot password?