In modern water treatment technologies, sorption methods play a key role in removing toxic components from wastewater. The most commonly used adsorbent is activated carbon, but its high cost and difficulty of disposal limit its use in water-intensive processes. Natural dispersed silica, such as opoca, provides an efficient and environmentally friendly alternative. The present paper is devoted to the study of a safe method of utilization of spent silica-based adsorbent by lithification method. The results of the analysis of the chemical composition of spent materials, the mechanism of encapsulation of toxic components and their subsequent use as a secondary material resource (SMR) are given. Various additives can be used to improve the effectiveness of opoka as a sorbent or component in waste management processes. These additives improve the sorption, mechanical and chemical properties of the material. International approaches to this task are reviewed. Comparative data with other disposal methods are given.
DISPOSAL OF HAZARDOUS SLUDGE BY LITHIFICATION WITH OPOKA
1. Koganovskiy, A. M., Klimenko N. A., Levchenko T. M., Roda I. G. Adsorbciya organicheskih veschestv iz vody. L.: Himiya, 1990. 256 s.
2. Amari A, Noreen A, Osman H, Sammen S S, Al-Ansari N and Salman HM (2023). Investigation of the viable role of oil sludge-derived activated carbon for oily wastewater remediation. Front. Environ. Sci. 11:1138308.
3. A. K. Strelkov, P. G. Bykova, M. A. Gridneva. Filtration materials of natural origin // IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2020. V. 962. №. 2. P. 022-038.
4. Klimov E. S., Buzaeva M. S. Prirodnye sorbenty i kompleksony v ochistke stochnyh vod. Ul'yanovsk: UlGTU, 2011. 201 s.
5. Ubas'kina Yu. A., Korosteleva Yu. A. Issledovanie vozmozhnosti prakticheskogo primeneniya diatomita dlya ochistki stochnyh vod // Vestnik BGTU im. V.G. Shuhova. 2017. №7. S.92-96. DOI: 10.12737/ 6.
6. Mullick A, Neogi S. Ultasound assisted synthesis of Mg-Mn-Zr impregnated activated carbon for effective fluoride adsorption from water. // Ultrasonics - Sonochemistry. 2019;50:126-137. DOI:
7. Pytka-Woszczyło A, Różańska-Boczula M, Gizińska-Górna M, Marzec M, Listosz A, Jóźwiakowski K. Efficiency of Filters Filled with Rockfos for Phosphorus Removal from Domestic Sewage. Advances in Science and
8. Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A.P.; Hak, Y.K.; Joshi, M. K. Technological trends in heavy metals removal from industrial wastewater. J. Environ. Chem. Eng. 2021, 9, 105688.
9. Boelsing, F. Remediation of toxic waste sites – DCR technology in the field of
10. immobilization and fixation of hazardous compounds. Hannover, Germany: Ministry of Economics, Technology and Traffic, Federal Republic of Germany.1988.
11. Shiqing Gu, Xiaonan Kang, Lan Wang, Eric Lichhttps://doi.org/10.1007/s10311-018-0813-9. hal-02142607.
12. Tran Huyen Vu, Nadarajah Gowripala. Mechanisms of Heavy Metal Immobilisation using Geopolymerisation Techniques. // Journal of Advanced Concrete Technology, 2018, Volume 16, Issue 3, rr. 124-135.
13. Katri Piekkari, Hoang Nguyen, Katja Kilpimaa, Mirja Illikaine., Ladle slag–based binder for the solidification/stabilization of heavy-metal-rich industrial waste // Journal of Environmental Management, V. 367,
14. D. Boriskov., S. Efremova, N. Komarova, E. I. Tikhomirova, A. Bodrov. (2021). Applicability of the modified diatomite for treatment of wastewater containing heavy metals. E3S Web Conf., 247 (2021) 01052.
15. ElSayed, E. E. (2018). Natural diatomite as an effective adsorbent for heavy metals in water and wastewater treatment (a batch study). // Water Science, 32(1), rr. 32–43. https://doi.org/10.1016/j.wsj.2018.02.001.
16. Vurdova N. G. Issledovanie primeneniya dispersnyh kremnezemov dlya sorbcionnoy ochistki stochnyh vod // Vestnik Volgogradskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta. Seriya:
17. El-Eswed, B. I., Yousef, R. I., Alshaaer, M., Hamadneh, I., Al-Gharabli, S. I., Khalili, F., (2015). Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers. International Journal of Mineral
18. Rudnik M. I., Gavrilov Yu. L., Rezanova E. E. Tehnologii i oborudovanie TEK: Tehnologicheski-apparaturnye usloviya sozdaniya i primeneniya kompleksnoy pererabotki opasnyh othodov s
19. Shpin'kova M. S., Mescheryakov S. V. Reagentnoe kapsulirovanie neftyanyh othodov s primeneniem konechnyh produktov tehnologii v kachestve tovarnoy produkcii // Ekologiya i promyshlennost' Rossii.
20. Bayar, S., Talinli, İ. Solidification/stabilization of hazardous waste sludge obtained from a chemical industry. Clean Techn Environ Policy 15, 157–165 (2013). https://doi.org/10.1007/s10098-012-0494-1
21. Falayi, T. Sustainable solidification of ferrochrome slag through geopolymerisation: a look at the effect of curing time, type of activator and liquid solid ratio. // Sustain Environ. Res/ 29, 21 (2019).
22. Boelsing, F. Remediation of toxic waste sites – DCR technology in the field of
23. immobilization and fixation of hazardous compounds. Hannover, Germany: Ministry of Economics, Technology and Traffic, Federal Republic of Germany.1988.
24. Shiqing Gu, Xiaonan Kang, Lan Wang, Eric Lichtfouse, Chuanyi Wang. Clay mineral adsorbents for heavy metal removal from wastewater // Environmental Chemistry Letters, 2019, 17 (2), pp.629-654.
25. Tran Huyen Vu, Nadarajah Gowripalan, Mechanisms of Heavy Metal Immobilization using Geopolymerisation Techniques. // Journal of Advanced Concrete Technology, 2018, Volume 16, Issue 3, rr 124-135.
26. Bin Guo, Bo Liu, Jian Yang, Shengen Zhang, The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments. // Journal of Environmental Management, V. 193, 2017, rr