Simferopol, Simferopol, Russian Federation
Diabetes mellitus is a global medical and social problem that requires the development of new approaches to studying its pathogenesis and treatment. This study is devoted to analyzing the features of biochemical shifts in Wistar rats (n=28) with alloxan-induced diabetes two months after its induction (administered intraperitoneally three times at 100 mg/kg, with a total dose of 300 mg/kg).This experimental model reliably reproduces the key mechanisms of the pathogenesis of severe insulin-dependent diabetes and can be recommended for long-term experimental studies, drug testing, and evaluating the effectiveness of approaches aimed at correcting metabolic and organ dysfunctions in diabetes mellitus. Changes in the biochemical parameters of rat blood serum indicate significant disturbances in carbohydrate, lipid, protein, and energy metabolism, the development of inflammatory processes, and oxidative stress, which may result from impaired function and structure not only of the pancreas but also of the kidneys, liver, blood vessels, and other organs.Signs of organ damage have been identified, including destructive changes in muscle tissue, impaired liver function, and early manifestations of diabetic nephropathy.The obtained results expand current understanding of the mechanisms of diabetes development, the extent of metabolic disturbances under experimental diabetes conditions, and may serve as a basis for further studies on the etiology and pathogenesis of liver pathology in diabetes.
diabetes mellitus; alloxan-induced diabetes; biochemical blood parameters in rats; carbohydrate, lipid, protein, and energy metabolism
1. Sun H. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045 / H. Sun, P. Saeedi, S. Karuranga [et al.] // Diabetes Res. Clin. Pract. – 2022. – Vol. 183.
2. Stanifer J. W. Prevalence, risk factors, and complications of diabetes in the Kilimanjaro region: a population-based study from Tanzania /J. W. Stanifer, C. R. Cleland, G. J. Makuka [et al.]//PLoS One.– 2016.
3. Dedov I. I. Saharnyy diabet v Rossiyskoy Federacii: rasprostranennost', zabolevaemost', smertnost', parametry uglevodnogo obmena i struktura saharosnizhayuschey terapii po dannym
4. Jwad M. Types of diabetes and their effect on the immune system / M. Jwad, H. Yousif Al-Fatlawi, P. D. Student // J. Adv. Pharm. Pract. – 2022. – Vol. 4, No. 1. – P. 21–30.
5. Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes / S. Lenzen // Diabetologia. – 2008. – Vol. 51. – P. 216–226.
6. Pal'chikova N. A. Gormonal'no-biohimicheskie osobennosti alloksanovoy i streptozotocinovoy modeley eksperimental'nogo diabeta / N. A. Pal'chikova, N. V. Kuznecova, O. I. Kuz'minova
7. Zakaria Z. Z. Animal models in type 2 diabetes mellitus research: pros and cons / Z. Z. Zakaria, M. N. Ahmad, N. A. Qinna // Jordan J. Agric. Sci. – 2021. – Vol. 17. – P. 425–440.
8. Gati M. A. Physiological and histological study of experimental diabetes mellitus by alloxan / M. A. Gati // Int. J. Adv. Res. – 2016. – Vol. 4, No. 3. – P. 1814–1818.
9. Bafaev Zh. T. Osobennosti tipologicheskih svoystv zhivotnyh v klinicheskom techenii eksperimental'noy modeli alloksanovogo diabeta / Zh. T. Bafaev, A. A. Mavlanov, Z. N. Hamidova
10. Rashmi P. Rodent models for diabetes / P. Rashmi, A. Urmila, A. Likhit [et al.] // 3 Biotech. – 2023. – Vol. 13. – P. 80. – DOI:https://doi.org/10.1007/s13205-023-03488-0.
11. Elsner M. Importance of the GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan / M. Elsner, M. Tiedge, B. Guldbakke [et al.] // Diabetologia. – 2002. – Vol. 45, No. 11. – P. 1542–1549.
12. Radenković M. Experimental diabetes induced by alloxan and streptozotocin: the current state of the art / M. Radenković, M. Stojanović, M.Prostran // J. Pharmacol. Toxicol. Methods.–2016.–Vol. 78.– P.13–31.
13. Chuyan E. N. Osobennosti izmeneniya biohimicheskih pokazateley krovi krys v usloviyah raznyh eksperimental'nyh modeley alloksan-inducirovannogo diabeta/E. N. Chuyan, S. Yu. Livencov, N. I.
14. Danilova I. G. Sposob modelirovaniya alloksanovogo diabeta / I. G. Danilova, I. F. Gette: Patent na izobretenie № 2534411; zayavl. 27.11.2014; opubl. 27.11.2014. – Byul. № 33.
15. Care D. American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes–2019 // Diabetes Care. – 2019. – Vol. 42, Suppl. 1. – P. S13–S28.
16. Dedov I. I. Algoritmy specializirovannoy medicinskoy pomoschi bol'nym saharnym diabetom / Pod red. I. I. Dedova, M. V. Shestakovoy, A. Yu. Mayorova. – 9-y vyp. // Saharnyy diabet
17. Barcham D. An improved color reagent for the determination of blood glucose by the oxidase systeme / D. Barcham, P. Trinder // Analyst. – 1972. – Vol. 97, No. 151. – P. 142–145.
18. Little R. R. Standardization of HbA1c Measurement / R. R. Little, C. L. Rohlfing, D. B. Sacks // Clin. Chem. – 2007. – Vol. 53, No. 6. – P. 810–817. – DOI:https://doi.org/10.1373/clinchem.2007.091967.
19. Sacks D. B. Insulin assays and reference values / D. B. Sacks // Diabetes Metab. – 2007. – Vol. 33, No. 5. – P. 459–464. – DOI:https://doi.org/10.1016/S1262-3636(07)80059-5.
20. Allain C. Enzymatic determination of total serum cholesterol / C. Allain, L. Poon, G. Chan [et al.] // Clin. Chem. – 1974. – Vol. 20, No. 4. – P. 470–475.
21. Roeschlau P. Enzymatische Bestimmung des Gesampt-Cholesterins in Serum / P. Roeschlau, E. Bernt, W. A. Gruber // Clin. Chem. Clin. Biochem. – 1974. – Vol. 12, No. 5. – P. 226–227.
22. Nauk M. Measurement of high-density-lipoprotein cholesterol / M. Nauk, D. Wiebe, G. Warnick // Handbook of Lipoprotein Testing. – 2nd ed. – Washington DC: AACC Press, 2001. – P. 221–244.
23. Cornall A. G. Determination of serum proteins by means of the biuret reaction / A. G. Cornall, C. J. Bardawill, M. M. David // J. Biol. Chem. – 1949. – Vol. 177, No. 2. – P. 751–766.
24. Burtis C. A. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics / C. A. Burtis, E. R. Ashwood, D. E. Bruns. – 5th ed. – St. Louis: Elsevier, 2012.
25. Fossati P. Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine / P. Fossati, L. Prencipe, G. Berti // Clin. Chem. – 1980.
26. Henry R. J. Revised spectrophotometric methods for the determination of glutamic-oxalacetic transaminase, glutamic-pyruvic transaminase, and lactic acid dehydrogenase / R. J. Henry, N. Chiamori,
27. Stein W. Creatine kinase (total activity), creatine kinase isoenzymes and variants / W. Stein // In: Clinical Laboratory Diagnostics: Use and Assessment of Clinical Laboratory Results. – Frankfurt: TH-
28. Dolgov V. V. Klinicheskaya laboratornaya diagnostika. Nacional'noe rukovodstvo. Tom 1 / V. V. Dolgov, V. V. Men'shikov. – M.: GEOTAR-Media, 2013.
29. Moss D. W. Clinical enzymology / D. W. Moss, A. R. Henderson // In: Tietz Textbook of Clinical Chemistry. – 3rd ed. – Philadelphia: WB Saunders Company, 1999. – P. 617–721.
30. Fachbach F. Age-dependent reference limits of several enzymes in plasma at different measuring temperatures / F. Fachbach, B. Zawta // Klin. Lab. – 1992. – Vol. 38. – P. 555–561.
31. Guder W. G. The quality of diagnostic samples / W. G. Guder, B. Zawta [et al.]. – 1st ed. – Darmstadt: GIT Verlag, 2001. – P. 14–15.
32. Claus D. R. Radioimmunoassay of human C-reactive protein and levels in normal sera / D. R. Claus, A. P. Osmand, H. Gewurz // J. Lab. Clin. Med. – 1976. – Vol. 87. – P. 120–128.
33. Hind C. R. H. The role of serum C-reactive protein (CRP) measurement in clinical practice / C. R. H. Hind, M. B. Pepys // Int. Med. – 1984. – Vol. 5. – P. 112–151.
34. Yarmolinskaya M. I. Eksperimental'nye modeli saharnogo diabeta 1-go tipa/M. I. Yarmolinskaya, N. Yu. Andreeva, E. I. Abashova, E. V. Misharina // Zhurnal akusherstva i zhenskih bolezney. – 2019.
35. El'bek'yan K. S. Osobennosti protekaniya alloksan-inducirovannogo saharnogo diabeta u eksperimental'nyh krys / K. S. El'bek'yan, A. B. Hodzhayan, F. A. Bidzhieva [i dr.] // Medicinskiy
36. Bidzhieva F. A. Biohimicheskie osobennosti alloksan-inducirovannogo saharnogo diabeta / F. A. Bidzhieva // Medicinskiy alfavit. – 2018. – T. 31, № 2. – S. 12–14.
37. Fajarwati I. Administration of alloxan and streptozotocin in Sprague Dawley rats and the challenges in producing diabetes model / I. Fajarwati, D. D. Solihin, T. Wresdiyati, I. Batubara // IOP Conf. Ser.: Earth
38. Maleki V. The effect of resveratrol on advanced glycation end products in diabetes mellitus: a systematic review / V. Maleki [et al.] // Arch. Physiol. Biochem. – 2020. – Vol. 126, No. 6. – P. 1–10.
39. Yashanova M. I. Validnost' modeley eksperimental'nogo diabeta dlya izucheniya okislitel'nogo stressa / M. I. Yashanova, T. G. Scherbatyuk, V. Yu. Nikolaev // Zhurn. mediko-biologicheskih
40. Dzhafarova R. E. Sravnitel'noe issledovanie razlichnyh modeley alloksan-inducirovannogo saharnogo diabeta / R. E. Dzhafarova // Kazanskiy medicinskiy zhurnal. – 2013. – № 6.
41. Ignatchik D. A. Vliyanie alloksana i streptozotocina na uroven' insulina i sistemu glutationa v tkanyah zhivotnyh [Elektronnyy resurs] / D. A. Ignatchik // Aktual'nye problemy sovremennoy
42. Lomaeva S. V. Osobennosti obmena biopolimerov soedinitel'noy tkani v pecheni krys s alloksanovym diabetom / S. V. Lomaeva, I. F. Gette, T. S. Bulavinceva [i dr.] // Byul. sib.
43. Mihaylichenko V. Yu. Effekt transplantacii kul'tury kletok podzheludochnoy zhelezy pri alloksanovom saharnom diabete u krys v eksperimente / V. Yu. Mihaylichenko, S. S. Stolyarov //
44. Danilova I. G. Citokinovaya regulyaciya regeneratornyh processov v podzheludochnoy zheleze pri alloksanovom saharnom diabete u krys i ego korrekcii soedineniem ryada 1,3,4-tiadiazina i
45. Kitabchi A. E. Thirty years of personal experience in hyperglycemic crises: diabetic ketoacidosis and hyperglycemic hyperosmolar state / A. E. Kitabchi, G. E. Umpierrez, J. N. Fisher, M. B. Murphy,
46. Harita N. Lower serum creatinine is a new risk factor of type 2 diabetes: the Kansai healthcare study / N. Harita, T. Hayashi, K. K. Sato [et al.] // Diabetes Care. – 2009. – Vol. 32. – P. 424–426.
47. Lorenzo C. Risk of type 2 diabetes among individuals with high and low glomerular filtration rates / C. Lorenzo, S. D. Nath, A. J. Hanley [et al.] // Diabetologia. – 2009. – Vol. 52. – P. 1290–1297.
48. Hjelmeszhth J. Low serum creatinine is associated with type 2 diabetes in morbidly obese women and men: a cross-sectional study / J. Hjelmeszhth, J. Rshislien, N. Nordstrand [et al.] // BMC Endocr. Disord. – 2010.
49. Madyanov I. V. Mochevaya kislota i saharnyy diabet. Promezhutochnye itogi mnogoletnih issledovaniy / I. V. Madyanov // Zdravoohranenie Chuvashii. – 2017. – № 2. – S. 59–64.
50. Shestakova M. V. Saharnyy diabet i hronicheskaya bolezn' pochek: vozmozhnosti prognozirovaniya, ranney diagnostiki i nefroprotekcii v XXI veke /M. V. Shestakova//Terapevt. arhiv.– 2016. – T. 88, № 6.
51. Lebedeva N. O. Markery doklinicheskoy diagnostiki diabeticheskoy nefropatii u pacientov s saharnym diabetom 1 tipa /N. O. Lebedeva, O. K. Vikulova // Saharnyy diabet. – 2012. – № 2. – S. 38–45.
52. Klimontov V. V. Hronicheskaya bolezn' pochek pri saharnom diabete / V. V. Klimontov, A. I. Korbut // Terapevt. arhiv. – 2020. – № 5. – S. 58–58.
53. Mistry J. Antidiabetic activity of mango peel extract and mangiferin in alloxan-induced diabetic rats / J. Mistry, M. Biswas, S. Sarkar [et al.] // Futur. J. Pharm. Sci. – 2023. – Vol. 9. – P. 22.
54. Kleiner D. E. Histology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in adults and children / D. E. Kleiner, H. R. Makhlouf // Clin. Liver Dis. – 2016. – Vol. 20, No. 2. – P. 293–312.
55. Lankin V. Z. The initiation of the free radical peroxidation of low density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injury in atherosclerosis
56. Van L. S. High-density lipoprotein at the interface of type 2 diabetes mellitus and cardiovascular disorders / L. S. Van [et al.] // Curr. Pharm. Des. – 2010. – Vol. 16. – P. 1504–1516.
57. Andreychenko I. A. Informativnost' izmeneniy biohimicheskih parametrov syvorotki krovi pri saharnom diabete 2-go tipa / I. A. Andreychenko, S. D. Galkin // Vestn. novyh med.
58. Kusmartseva I. Temporal analysis of amylase expression in control, autoantibody-positive, and type 1 diabetes pancreatic tissues / I. Kusmartseva, M. Beery, H. Hiller [et al.] // Diabetes. – 2020. – Vol. 69, No. 1.
59. Ross J. J. Exocrine pancreatic enzymes are a serological biomarker for type 1 diabetes staging and pancreas size / J. J. Ross, C. H. Wasserfall, R. Bacher [et al.] // Diabetes. – 2021. – Vol. 70, No. 4.
60. Endo T. Amylase α-2A autoantibodies: novel marker of autoimmune pancreatitis and fulminant type 1 diabetes / T. Endo, S. Takizawa, S. Tanaka [et al.] // Diabetes. – 2009. – Vol. 58, No. 3. – P. 732–737.
61. Eprintsev A. T. Expression levels and activity of rat liver lactate dehydrogenase isoenzymes in alloxan diabetes / A. T. Eprintsev, I. R. Bondareva, N. V. Selivanova // Biochem. (Moscow), Suppl. Series B:
62. Sattorova M. A. Euforbin-3 i Glabra na techenie patologicheskogo processa alloksan-inducirovannogo saharnogo diabeta / M. A. Sattorova, M. A. Mustafakulov // Modern Educational
63. Musatov O. V. Aktivnost' schelochnoy fosfatazy syvorotki krovi v zavisimosti ot vida operacii pri ranah pecheni, selezenki i pochki v eksperimente/O. V. Musatov, S. A. Zurnadzhan, A. V. Kohanov
64. Butolin E. G. Izmenenie soderzhaniya mineral'nyh veschestv v kostnoy tkani u krys s eksperimental'nym diabetom / E. G. Butolin [i dr.] // Vestn. Udmurtskogo un-ta. Ser. Biologiya. Nauki o Zemle.
65. Terent'eva M. G. Izmenenie aktivnosti gamma-glutamiltransferazy v tkanyah pecheni u krol'chat v raznye fazy postnatal'nogo ontogeneza / M. G. Terent'eva, N. V. Mardar'eva, N. V. Schipcova
66. Sobirova D. R. Rol' i vzaimodeystvie kreatinfosfokinazy i gamma-glutamiltranspeptidazy v razvitii saharnogo diabeta i ih znachenie v patogeneze bronholegochnyh zabolevaniy/D. R. Sobirova.
67. Vntek L. The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases / L. Vntek // Front. Pharmacol. – 2012. – Vol. 3. – P. 55.
68. Basiglio C. L. Complement activation and disease: protective effects of hyperbilirubinaemia / C. L. Basiglio, S. M. Arriaga, F. Pelusa [et al.] // Clin. Sci. – 2010. – Vol. 118. – P. 99–113.
69. Hwang H. J. Relationship between bilirubin and C-reactive protein / H. J. Hwang, S. W. Lee, S. H. Kim // Clin. Chem. Lab. Med. – 2011. – Vol. 49. – P. 1823–1828.
70. Richardson S. J. The prevalence of enteroviral capsid protein Vp1 immunostaining in pancreatic islets in human type 1 diabetes / S. J. Richardson, A. Willcox, A. J. Bone, A. K. Foulis, N. G. Morgan
71. Asmat U. Diabetes mellitus and oxidative stress – a concise review / U. Asmat, K. Abad, K. Ismail // Saudi Pharm. J. – 2016. – Vol. 24, No. 5. – P. 547–553.
72. Suryadinata R. V. Effectiveness of lime peel extract (Citrus aurantifolia Swingle) against C-reactive protein levels in alloxan-induced Wistar rats / R. V. Suryadinata, A. Lorensia, K. Sefania // Glob. Med.
73. Ferrer J. C. Control of glycogen deposition / J. C. Ferrer, C. Favre, R. R. Gomis, J. M. Fernbndez-Novell, M. Garcna-Rocha, N. de la Iglesia [et al.] // FEBS Lett. – 2003. – Vol. 546, No. 1. – P. 127–132.
74. Jiang S. Hepatic functional and pathological changes of type 1 diabetic mice in growing and maturation time / S. Jiang, X. Tang, K. Wang, Y. Liang, Y. Qian, C. Lu [et al.] //J. Cell. Mol. Med. – 2019. – Vol. 23, No. 8.
75. Bueverov A. O. Porazhenie pecheni pri saharnom diabete 1-go tipa / A. O. Bueverov, A. V. Zilov // Ros. zhurn. gastroenterologii, gepatologii, koloproktologii. – 2021. – T. 31, № 2. – S. 7–13.