The review provides data on the prospects for using photoplethysmography as a method for early detection of diseases of the cardiovascular system and screening for vegetative-vascular dysfunction in patients. The literature search was carried out from 2004 to 2024 on the websites Pubmed, Springer, eLIBRARY in Russian and English. According to modern data on the pathogenesis of the development of pathology of the cardiovascular system, one of the main mechanisms is autonomic dysfunction, which determines a cascade of events leading to changes in the properties and structure of the vascular wall. Methods for assessing vegetative imbalance are presented, in particular, the photoplethysmography (PPG) technique, which allows recording periodic ˜uctuations in various blood frequencies in the distal vascular bed, characterizing physiological processes (cardiac activity, respiratory in˜uences, neurogenic, intrinsic endothelial activity). In addition, other diagnostic possibilities of PPG are considered, such as assessment of heart rate and analysis of heart rate variability, determination of vascular wall properties, blood saturation level (pulse oximetry), microcirculatory conditions. PPG allows to identify changes in the venous vascular system that may occur due to venous occlusion, varicose veins of the lower extremities. The calculated parameters obtained from the use of PPG can be used for early detection of predictors of a number of diseases of the respiratory and cardiovascular systems. PPG is accessible, cost-e—ective and easy to use, which makes it an indispensable diagnostic tool both for disease screening and for assessing the e—ectiveness of therapy and rehabilitation measures in various †elds of medicine: cardiology, neurology, pulmonology, sports, physical and rehabilitation medicine.
diagnostics, cardiovascular diseases, vegetative-vascular dysfunction, photoplethysmography, heart rate variability.
1. World Health Organization statistic. URL: https://www.who.int/health topics/cardiovasculardiseases/. (Data obrascheniya 02.03.2024).
2. Go D. C., Lloyd-Jones D. M., Bennett G., et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American College of Cardiology. American Heart Association Task Force on practice guidelines.
3. Palma J. A., Benarroch E. E. Neural control of the heart: Recent concepts and clinical correlations. Neurology 2014;83:261-271. doi:10.1212/ WNL.0000000000000605
4. Tian J., Yuan Y., Shen M., et al. Association of resting heart rate and its change with incident cardiovascular events in the middle-aged and older Chinese. Sci. Rep. 2019;9:6556. doihttps://doi.org/10.1038/s41598019-43045-5.
5. Ferrari R., Fox K. Heart rate reduction in coronary artery disease and heart failure. Nat. Rev. Cardiol. 2016;13:493. doihttps://doi.org/10.1038/nrcardio.2016.84.
6. Otsuka T., Kawada T., Katsumata M., et al. Utility of second derivative of the finger photoplethysmogram for the estimation of the risk of coronary heart disease in the general population. Circ J. 2006;70(3):304-10.
7. Schlaich M. P., Lambert E., Kaye D. M., et al. Sympathetic augmentation in hypertension: role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation. Hypertension 2004;43:169-175.
8. Faurholt-Jepsen M., Kessing L.V., Munkholm K. Heart rate variability in bipolar disorder: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2017;73:68-80. doihttps://doi.org/10.1016/j. neubiorev.2016.12.007.
9. Moraes J. L., Rocha M. X., Vasconcelos G. G., et al. Advances in photopletysmography signal analysisfor biomedical applications. Sensors 2018;18:1894. doihttps://doi.org/10.3390/s18061894.
10. Kiselev A. R., Borovkova E. I., Shvartz V. A., Skazkina V. V., Karavaev A. S., Prokhorov M. D., Ispiryan A. Y., Mironov S. A., Bockeria O. L. Low-frequency variability in photoplethysmographic waveform and heart rate during
11. Natarajan A., Pantelopoulos A., Emir Farinas H., Natarajan P. Heart rate variability with photoplethysmography in 8 million individuals: a cross-sec tional study. The Lancet Digital Health. 2020;2(12):650-657. doihttps://doi.org/10.1016/s2589
12. Madhavan G. Plethysmography. Biomedical Instrumentation & Technology 2005;39(5):367-371. doihttps://doi.org/10.2345/0899-8205(2005)39[367:P]2.0.CO;2.
13. Ivanov S. V., Ryabikov A. N., Malyutina S. K. Zhestkost' sosudistoy stenki i otrazhenie pul'sovoy volny v svyazi s arterial'noy gipertenziey. Sibirskiy nauchnyy medicinskiy zhurnal. 2008;28(3):9-12.
14. Lebedev P. A., Gracheva A. I., Lebedeva E. P., Il'chenko M. Yu., Aleksandrov M. Yu. Disfunkciya sosudistogo endoteliya i avtonomnoy nervnoy sistemy v stratifikacii serdechno-sosudistogo riska.
15. Luschik M.V., Makeeva A.V., Ostrouhova O.N., Bolotskih V.I., Nagovicin A.K. Primenenie fotopletizmografii dlya ocenki so stoyaniya mikrocirkulyatornogo rusla v kachestve metoda diagnostiki zabolevaniy
16. Dikarev V. I., Kazakov N. P., Lesnichiy V. V. Metod funkcional'noy diagnostiki rannih stadiy sosudistoy patologii kak faktor mediko-demograficheskoy bezopasnosti naseleniya. Tehniko tehnologicheskie
17. Garamyan B. G., Grinevich A. A., Hadarcev A. A., Chemeris N. K. Sravnitel'nyy analiz konturnogo i fazovogo podhodov k ocenke vremeni prohozhdeniya pul'sovoy volny. Vestnik novyh medicinskih tehnologiy.
18. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiological measurement. 2007;28(3):1-39. doihttps://doi.org/10.1088/0967-3334/28/3/R01.
19. Tankanag A. V., Grinevich A. A., Tikhonova I. V., Chemeris N. K. Phase synchronization of human cardiovascular oscillations using photoplethysmography and laser Doppler flowmetry data» «Progress in Biomedical Optics
20. Ivanov S. V., Ryabikov A. N., Malyutina S. K. Zhestkost' sosudistoy stenki i otrazhenie pul'sovoy volny v svyazi s arterial'noy gipertenziey. Sibirskiy nauchnyy medicinskiy zhurnal. 2008;28(3):9-12.
21. Burko N. V., Avdeeva I. V., Oleynikov V. E., Boycov S. A. Koncepciya rannego sosudistogo Racional'naya farmakoterapiya v kardiologii. 2019;15(5):742-9.
22. Korneva V. A., Kuznecova T. Yu. Ocenka pokazateley zhestkosti arterial'noy stenki pri sutochnom monitorirovanii arterial'nogo davleniya. Terapevticheskiy arhiv. 2016;88(9):119-124.
23. Grinevich A. A., Garamyan B. G., Chemeris N. K. Fazovyy metod ocenki vremeni prohozhdeniya pul'sovoy volny po sosudistomu ruslu cheloveka. Vestnik novyh medicinskih tehnologiy. 2020;2:10711.
24. Lapitan D. G., Glazkov A. A., Rogatkin D. A. Ocenka vozrastnyh izmeneniy elastichnosti stenok perifericheskih sosudov metodom fotopletizmografii. Medicinskaya fizika. 2020;3:71-77.
25. Simonyan M. A., Posnenkova O. M., Kiselev A. P. Vozmozhnosti fotopletizmogpafii kak metoda skrininga patologii serdechno-sosudistoy sistemy. Kardio-IT. 2020;7(1):e0102. doihttps://doi.org/10.15275/cardioit.2020.0102.
26. Sannikov A. B., Emel'yanenko V. M., Drozdova I. V. Obzor pletizmograficheskih metodov izucheniya narusheniy gemodinamiki u pacientov s hronicheskimi zabolevaniyami ven nizhnih konechnostey.
27. Sharif-Kashani B., Behzadnia N., Shahabi P., Sadr M. Screening for deep vein thrombosis in asymptomatic high-risk patients: a comparison between digital photoplethysmography and venous ultrasonography. Angiology. .
28. Mateusz Pałasz, Marek Żyliński, Gerard Cybulski Changes in the Shape of the Photoplethysmographic Signal in Response to the Active Orthostatic Test Computing in Cardiology 2020;47:1-3. doihttps://doi.org/10.22489/CinC.2020.426.
29. Snezhickiy V. A. Metodicheskie aspekty provedeniya ortostaticheskih prob dlya ocenki sostoyaniya vegetativnoy nervnoy sistemy dlya ocenki sostoyaniya vegetativnoy nervnoy sistemy i funkcii sinusovogo uzla.
30. Cody E.Dunn, Derek C. Monroe, Christian Crouzet, James W.Hicks, Bernard Choi Speckleplethysmographic (SPG) Estimation of Heart Rate Variability During an Orthostatic Challenge. Scientific reports. 2019;9(1),14079.



