Significant successes in the study of physiological and pathophysiological patterns of bone remodeling in recent years have highlighted immune factors important role in bone tissue pathology and significantly revised our ideas about postmenopausal osteoporosis development mechanisms. Advanced osteoimmunology and evidence of immune mechanisms key role in bone remodeling disorders gave us possibility for identification of osteoporosis as chronic immune-mediated disease. Moreover, instead of the term “Osteoporosis”, the term “Immunoporosis” was reasonably used. Bone tissue is constantly in state of continuous renewal (remodeling), which is balanced by formation and resorption processes and is achieved through the coordinated functioning of the three main bone cells types. Constant and active interaction between osteocytes, osteoblasts and osteoclasts is ensured by cytokines (RANKL, osteoprotegerin, macrophage colony-stimulating factor, vascular endothelial growth factor, etc) secretion. Moreover, predominantly, bone remodeling regulation is limited by Osteocyte-Osteoblast-Osteoclast system. With pathological changes in immune reactivity, which may be caused by deficiency of estrogen, vitamin D, calcium, inflammatory diseases, etc., various types of immunocompetent cells are activated. This is accompanied with increased RANKL production by leukocyte cells, which potentiates processes of maturation, differentiation of osteoclasts, and increase in their activity. In addition to RANKL secretion, activated leukocytes, including T lymphocytes, enhance other osteoclastogenic cytokines production. IL-1, IL-6, IL-17, TNF and TGF-β are main mediators of accelerated bone loss in postmenopausal women.
cytokines, bone, remodeling, osteoporosis, postmenopause
1. Horton J. E., Raisz L. G., Simmons H. A., Oppenheim J. J., Mergenhagen S. E. Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes. Science. 1972;177:793-5. doihttps://doi.org/10.1126/science.177.4051.793
2. Arron J. R., Choi Y. Bone versus immune system. Nature. 2000;408:535-6. doi:https://doi.org/10.1038/35046196
3. Ralston S. H., Schett G. Osteoimmunology. Calcif Tissue Int. 2018;102(5):501-2. doi: 10.1007/ s00223-018-0421-5.
4. Ginaldi L., De Martinis M. Osteoimmunology and Beyond. Curr. Med. Chem. 2016;23(33):3754-74.
5. Liu H., Luo T., Tan J., Li M., Guo J. Osteoimmunology’ Offers New Perspectives for the Treatment of Pathological Bone Loss. Curr Pharm Des. 2017;23(41):6272-8. doi:https://doi.org/10.2174/13816128236661705 11124459.
6. Srivastava R. K., Dar H. Y., Mishra P. K. Immunoporosis: Immunology of Osteoporosis-Role of T Cells. Front Immunol. 2018;9:657. doi:10.3389/ fimmu.2018.00657.
7. Walsh M. C., Takegahara N., Kim H., Choi Y. Updating osteoimmunology: regulation of bone cells by innate and adaptive immunity. Nat Rev Rheumatol. 2018;14(3):146-56. doi:https://doi.org/10.1038/nrrheum.2017.213.
8. Povoroznyuk V. V., Reznichenko N. A., Maylyan E. A. Immunological aspects of postmenopausal osteoporosis. Pain. Joints. Spine. 2013;(3):21-6. (In Russ.)
9. Geusens P., Lems W. F. Osteoimmunology and osteoporosis. Arthritis Res. Ther. 2011;13(5):242.
10. Asada N., Sato M., Katayama Y. Communication of bone cells with hematopoiesis, immunity and energy metabolism. Bonekey Rep. 2015;(4):748. doi: 10.1038/ bonekey.2015.117.
11. Michalski M. N., McCauley L. K. Macrophages and skeletal health. Pharmacol Ther. 2017;174:43-54. doi:https://doi.org/10.1016/j.pharmthera.2017.02.017.
12. Ono T., Nakashima T. Recent advances in osteoclast biology. Histochem Cell Biol. 2018;149(4):325-41. doi:https://doi.org/10.1007/s00418-018-1636-2.
13. Han Y., You X., Xing W., Zhang Z., Zou W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018;(6):16. doi: 10.1038/ s41413-018-0019-6.
14. Phetfong J., Sanvoranart T., Nartprayut K., Nimsanor N., Seenprachawong K., Prachayasittikul V., Supokawej A. Osteoporosis: the current status of mesenchymal stem cell-based therapy. Cell Mol Biol Lett. 2016;21:12. doi:https://doi.org/10.1186/s11658-016-0013-1.
15. Maylyan E. A. The multifactorial nature of the osteoporosis etiopathogenesis and the role of the canonical WNT-signaling pathway genes. Osteoporosis and osteopathy. 2015;(2):15-9. (In Russ.)
16. Boudin E., Van Hul W. Mechanisms in endocrinology: Genetics of human bone formation. Eur J Endocrinol. 2017;177(2):69-83. doi: 10.1530/ EJE-16-0990.
17. Park-Min K. H. Mechanisms involved in normal and pathological osteoclastogenesis. Cell Mol Life Sci. 2018;75(14):2519-28. doi:https://doi.org/10.1007/s00018- 018-2817-9.
18. Boyce B. F., Xiu Y., Li J., Xing L., Yao Z. NF-κB- Mediated Regulation of Osteoclastogenesis. Endocrinol Metab (Seoul). 2015;30(1):35-44. doi: 10.3803/ EnM.2015.30.1.35.
19. Maylyan E. A. Modern ideas about the etiology and pathogenesis of postmenopausal osteoporosis. The Problems of Osteology. 2015;18(2):3-11. (In Russ.)
20. Jung S. M., Kim K. W., Yang C. W., Park S. H., Ju J. H. Cytokine-mediated bone destruction in rheumatoid arthritis. J Immunol Res. 2014;2014:263625. doi:https://doi.org/10.1155/2014/263625.
21. Nagy V., Penninger J.M. The RANKL- RANK Story. Gerontology. 2015;61(6):534-42. doihttps://doi.org/10.1159/000371845.
22. Dar H. Y., Azam Z., Anupam R., Mondal R.K., Srivastava R.K. Osteoimmunology: The Nexus between bone and immune system. Front Biosci (Landmark Ed). 2018;23:464-92.
23. Guder C., Gravius S., Burger C., Wirtz D. C., Schildberg F. A. Osteoimmunology: A Current Update of the Interplay Between Bone and the Immune System. Front Immunol. 2020;11:58. doi: 10.3389/ fimmu.2020.00058