Abstract and keywords
Abstract (English):
The review is devoted to studying the pathogenesis of coronavirus infection in the human body and to determining the key changes that occur after the virus enters the cell. The role of the genome in the occurrence of pathogenetic changes, as well as the mechanism of infection of somatic cells with the SARS-CoV-2 virus, was studied. The entrance gates for the virus are the mucous membranes of the oral and nasal cavities, and the target cells are epithelial cells of the upper respiratory tract, in the lungs-ACE2 receptors, as well as cells of the gastrointestinal tract, kidneys, heart and blood vessels. In the majority of COVID-19 patients with severe to moderate severity disease the most affected system is the respiratory system, in particular, the lungs. Microcirculation disorder in the capillaries leads to the development of pulmonary edema, acute respiratory distress syndrome and/or disseminated intravascular coagulation. One of the main features of the pathogenesis of coronavirus infection is the phenomenon of a «cytokine storm», which is characterized by an increasing amount of pro-inflammatory cytokines in the blood.

Keywords:
coronavirus, pathogenesis, COVID-19, SARS-CoV-2, clinical manifestations of coronavirus infection, cytokine storm
Text
Text (PDF): Read Download
References

1. World Health Organization. Coronavirus Disease (COVID-19) Pandemic (2020). URL: https://www.who.int/emergencies/diseases/novel- coronavirus-2019.

2. World Health Organization. SOVID-19. Situation Report (12 February 2020). URL: https:// www.who.int/docs/default-source/coronaviruse/ situation-reports/20200212-sitrep-23-ncov. pdf?sfvrsn=41e9fb78_4.

3. World Health Organization. Novel Coronavirus (2019-nCoV). Situation Report (21 January 2020). URL: https://www.who.int/docs/ default-source/coronaviruse/situation-reports/ 20200121-sitrep-1-2019 cov.pdf?sfvrsn=20a99c10_4.

4. World Health Organization. Coronavirus disease (COVID-19) Weekly Epidemiological Update and Weekly Operational Update (12 January 2021). URL: https://www.who.int/publications/m/item/ weekly-epidemiological-update 12-january-2021.

5. Abaturov A. E., Agafonova E. A., Krivusha E. L., Nikulina A. A. Patogenez COVID-19. Zdoro- v'e Rebenka. 2020;15(2):133-144. doihttps://doi.org/10.22141/2224- 0551.15.1.2020.200598.

6. Baklaushev V.P., Kulemzin S.V., Gorchakov A.A., Lesnyak V.N., Yusubalieva G.M., Sotnikova A.G. COVID-19. Etiologiya, patogenez, diagnostika i lechenie. Klinicheskaya praktika. 2020;11(1):7-20. doihttps://doi.org/10.17816/clinpract26339.

7. Matheson N. J., Lehner P. J. How does SARS- CoV-2 cause COVID-19?. Science. 2020;369(6503):510- 511. doihttps://doi.org/10.1126/science.abc6156.

8. Graham R.L., Baric R.S. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J Virol. 2010;84(7):3134-3146. doihttps://doi.org/10.1128/JVI.01394-09.

9. Du L., He Y., Zhou Y., Liu S., Zheng B-J., Jiang S. The spike protein of SARS-CoV - a target for vaccine and therapeutic. Nat Rev Microbiol. March 2009;7(3):226-236. doihttps://doi.org/10.1038/nrmicro2090.

10. Lan J., Ge J., Yu J., Shan S., Zhou H., Fan S., Zhang Q., Shi X., Wang Q., Zhang L., Wang X. Structure of the SARS-CoV-2 spike receptor- binding domain bound to the ACE2 receptor. Nature. 2020;58 1(7807) :215-220. doihttps://doi.org/10.1038/s41586-020- 2180-5.

11. Li F., Li W., Farzan M., Harrison S.C. Structure of SARS coronavirus spike receptor- binding domain complexed with receptor. Science. 2005;309(5742):1864-1868. doi: 10.1126/ science.1116480.

12. Haytovich A. B. Koronavirusy (taksonomiya, struktura virusa). Krymskiy zhurnal eksperimental'noy i klinicheskoy mediciny. 2020;10(3):69-75. doihttps://doi.org/10.37279/2224-6444-2020-10- 3-69-81.

13. Nersisyan S. A., Shkurnikov M. Yu., Osip'yanc A. I., Vechorko V. I. Rol' regulyacii genov APF2/TMPRSS2 izoformami mikroRNK kishechnika v patogeneze COVID-19. Vestnik RGMU. Virusologiya. 2020;2:17-19. doi: https://doi.org/10.24075/vrgmu.2020.024.

14. de Haan, C. A., Te Lintelo E., Li Z., Raaben M., Wurdinger T., Bosch B. J., Rottier P.J. Cooperative involvement of the S1 and S2 subunits of the murine coronavirus spike protein in receptor binding and extended host range. J. Virol. 2006;80:10909-10918. doi:https://doi.org/10.1128/JVI.00950-06.

15. Daly J. L., Simonetti B., Klein K. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020;370(6518):861-865. doihttps://doi.org/10.1126/science.abd3072.

16. Schul'kin A. V., Filimonova A. A. Rol' svobodno-radikal'nogo okisleniya, gipoksii i ih korrekcii v patogeneze COVID-19. Terapiya. 2020;5:187-194. Doi: https://dx.doi.org/10.18565/ therapy.2020.5.187-194.

17. Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. 2020, tom 23, № 4 Science. 2020;367:1260-1263. Doihttps://doi.org/10.1126/science. abb2507.

18. Wei C., Wan L., Yan Q. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat Metab. 2020;2(12):1391-1400. doihttps://doi.org/10.1038/s42255-020- 00324-0.

19. Wang K., Chen W., Zhang Z. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther. 2020;5(1):283. Published 2020 Dec 4. doihttps://doi.org/10.1038/s41392-020- 00426-x.

20. Bailey C. C., Zhong G., Huang I. C., Farzan M. IFITM-Family Proteins: The Cell’s First Line of Antiviral Defense. Annu Rev Virol. 2014;1:261-283. doihttps://doi.org/10.1146/annurev-virology-031413-085537.

21. Petrischev N. N., Halepo O. V., Vavilenkova Yu. A., Vlasov T. D. COVID-19 i sosudistye narusheniya (obzor literatury). Regionarnoe krovoobraschenie i mikrocirkulyaciya. 2020;19(3):90-98. doi:https://doi.org/10.24884/1682-6655-2020-19-3-90-98.

22. Huang N., Perez P., Kato T., Mikami Y., Okuda K. Integrated Single-Cell Atlases Reveal an Oral SARS- CoV-2 Infection and Transmission Axis. MedrXiv. 2020;1:12-14. doi:https://doi.org/10.1101/2020.10.26.20219089.

23. Hou Y. J., Okuda K., Edwards C. E. SARS- CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell. 2020;182(2):429- 446.e14. doihttps://doi.org/10.1016/j.cell.2020.05.042.

24. Lu C. W., Liu X. F., Jia Z. F. 2019-nCoV transmission through the ocular surface must not be ignored. Lancet. 2020;395. doihttps://doi.org/10.1016/S0140- 6736(20)30313-5.

25. Li J. O., Lam D. C., Chen Y., Ting D. Novel. Coronavirus disease 2019 (COVID-19): The importance of recognising possible early ocular manifestation and using protective eyewear. Br J Ophthalmol. 2020;104(3):297-278. doi:10.1136/ bjophthalmol-2020-315994.

26. Vaduganathan M., Vardeny O., Michel T., McMurray J.V., Pfeffer M.A., Solomon S.D. Renin- Angiotensin-Aldosterone System Inhibitors in Patientswith Covid-19. N Engl J Med. 2020;382(17):1653-1659. doihttps://doi.org/10.1056/NEJMsr2005760.

27. Sizova E. N., Shmakova L. N., Vikidyakina E. V. Medicinskaya ekologiya SARS-CoV-2 (obzor literatury). Vyatskiy medicinskiy vestnik. 2020;3(67):98-101. doi: https://doi.org/10.24411/2220-7880-2020- 10115.

28. De Haan A., Kuo L., Masters P.S., Vennema H., Rottier P. J. M. Coronavirus particle assembly primary structure requirements of the membrane protein. J. Virol. 1998;72(8):6838-6850. doi:10.1128/ JVI.72.8.6838-6850.

29. Kuba K., Imai Y., Rao S. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875-879. doihttps://doi.org/10.1038/nm1267.

30. Sriram K., Insel P. A. A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance. Br J Pharmacol. 2020;177(21):4825-4844. doihttps://doi.org/10.1111/bph.15082.

31. Liu Y., Yang Y., Zhang C. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63(3):364-374. doihttps://doi.org/10.1007/s-11427-020-1643-8.

32. Uspenskaya Yu. A., Morgun A. V., Osipova E. D., Semyachkina-Glushkovskaya O. V., Malinovskaya N. A. CD147 kak novaya molekula-mishen' dlya farmakoterapii v onkologii. Eksperimental'naya i klinicheskaya farmakologiya. 2019;82(3):36-44. doi:https://doi.org/10.30906/0869-2092-2019-82-3-36-44.

33. Voronina T. A. Antioksidanty/antigipoksanty - nedostayuschiy pazl effektivnoy patogeneticheskoy terapii pacientov s COVID-19. Infekcionnye bolezni. 2020;2:97-102. doihttps://doi.org/10.20953/1729- 9225-2020-2-97-102.

34. Han X., Zhou Z., Fei L., Sun H., Wang R., Chen Y. et al. Construction of a human cell landscape at single-cell level. Nature. 2020;581(7808):303-309. doi:https://doi.org/10.1038/s41586-020-2157-4. Epub 2020 Mar 25. PMID: 32214235.

35. Lau S. Y., Wang P., Mok B. W. Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. Emerg Microbes Infect. 2020;9(1):837-842. doihttps://doi.org/10.1080/22221751.2020.1756700.

36. Li X., Geng M., Peng Y., Meng L., Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102-108. doihttps://doi.org/10.1016/j.jpha.2020.03.001.

37. Fahmi M., Kubota Y., Ito M. Nonstructural proteins NS7b and NS8 are likely to be phylogenetically associated with evolution of 2019-nCoV. Infec. Genet. and Evol. 2020;81:104272-104277. doi: https://doi.org/10.1016/j. meegid.2020.104272.

38. Viswanathan T., Arya S., Chan S.H. et al. Structural basis of RNA cap modification by SARS- CoV-2. Nat Commun. 2020;11(1):3718. Published 2020 Jul 24. doihttps://doi.org/10.1038/s41467-020-17496-8.

39. Bosch B. J., Bartelink W., Rottier P. J. Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. J Virol. 2008; 82(17):8887-8890. doihttps://doi.org/10.1128/JVI.00415-08.

40. Huang I. C., Bailey C. C., Weyer J. L. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathog. 2011;7(1):100-258. Published 2011 Jan 6. doi:10.1371/ journal.ppat.1001258.

41. Wang D., Hu B., Hu C. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. doi:10.1001/ jama.2020.1585.

42. Heldin P., Lin C.Y., Kolliopoulos C., Chen Y.H., Skandalis S.S. Regulation of hyaluronan biosynthesis and clinical impact of excessive hyaluronan production. Matrix Biol. 2019;78-79:100-117. doihttps://doi.org/10.1016/j. matbio.2018.01.017.

43. Zabozlaev F. G., Kravchenko E. V., Gallyamova A. R., Letunovskiy N. N. Patologicheskaya anatomiya legkih pri novoy koronavirusnoy infekcii (COVID-19). Predvaritel'nyy analiz autopsiynyh issledovaniy. Klinicheskaya praktika.2020;11(2):21-37. doi:https://doi.org/10.17816/clinpract34849.

44. Singh V. K., Mishra A., Singh S. Emerging Prevention and Treatment Strategies to Control COVID-19. Pathogens. 2020;9(6):501. doi:10.3390/ pathogens9060501.

45. Mason R. J. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J. 2020;55(4):2000607. doi: https://doi.org/10.1183/13993003.00607- 2020.

46. Milehina S. A. COVID-19. Obzor literatury. Nauchno-obrazovatel'nyy zhurnal dlya studentov i prepodavateley StudNet. 2020;7:509-519. doi:https://doi.org/10.24411/2658-4964-2020-10086.

47. Ebstein F., Poli Harlowe M. C., Studencka- Turski M., Kr'ger E. Contribution of the Unfolded Protein Response (UPR) to the Pathogenesis of Proteasome-Associated Autoinflammatory Syndromes (PRAAS). Front Immunol. 2019;10:2756. doi:10.3389/ fimmu.2019.02756.

48. Li Z., Yi Y., Luo X. et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol. 2020;92(9):1518-1524. doi:10.1002/ jmv.25727

49. Zhang L., Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol. 2020;92(5):479- 490. doihttps://doi.org/10.1002/jmv.25707.

50. Zaycev A.A., Chernov S.A., Stec V.V. i dr. Algoritmy vedeniya pacientov s novoy koronavirusnoy infekciey COVID-19 v stacionare. Metodicheskie rekomendacii. Consilium Medicum. 2020;22(11):16. doi: https://doi.org/10.26442/20751753.2020.11.200 520.

51. Reva I., Yamamoto T., Rasskazova M., Lemeshko T., Usov V. Erythrocytes as a target of SARS CoV-2 in pathogenesis of COVID-19. Archiv Euromedic. 2020;10(3):5-10. doihttps://doi.org/10.35630/2199- 885X/2020/10/3.1.

52. Sodhi C. P., Wohlford-Lenane C., Yamaguchi Y. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am J Physiol Lung Cell Mol Physiol. 2018;314(1):L17-L31. doihttps://doi.org/10.1152/ajplung.00498.2016.

53. Kogan E. A., Berezovskiy Yu. S., Procen- ko D. D., Bagdasaryan T. R., Grecov E. M., Demura S. A., Demyashkin G.A., Kalinin D. V., Kukleva A. D., Kurilina E. V., Nekrasova T. P., Paramonova N. B. Patologicheskaya anatomiya infekcii, vyzvannoy SARS-CoV-2. Sudebnaya medicina. 2020;6(2):8-30. doihttps://doi.org/10.19048/2411-8729-2020-6-2-8-30.

54. Hoffmann M., Kleine-Weber H., Schroeder S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. doihttps://doi.org/10.1016/j.cell.2020.02.052.

55. Kuster G. M., Pfister O., Burkard T. SARS- CoV2: should inhibitors of the renin-angiotensin system be withdrawn in patients with COVID-19? Eur Heart J. 2020;41(19):1801-1803. doihttps://doi.org/10.1093/eurheartj/ ehaa235

56. Bell T. J., Brand O. J., Morgan D. J. Defective lung function following influenza virus is due to prolonged, reversible hyaluronan synthesis. Matrix Biol. 2019;80:14-28. doihttps://doi.org/10.1016/j. matbio.2018.06.006.

57. Cinzerling V. A., Vashukova M. A., Vasil'eva M. V., Isakov A. N., Lugovskaya N. A., Narkevich T. A., Suhanova Yu. V., Semenova N. Yu., Gusev D. A. Voprosy patomorfogeneza novoy koronavirusnoy infekcii (COVID-19). Zhurnal infektologii. 2020;12(2):5-11. doi:https://doi.org/10.22625/2072-6732-2020-12-2- 5-11.

58. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect. 2020;80(6):607-613. doihttps://doi.org/10.1016/j. jinf.2020.03.037.

59. Kakodkar P., Kaka N., Baig M. A Comprehensive Literature Review on the Clinical Presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19). Cureus. 2020;12(4):e7560. doi:https://doi.org/10.7759/cureus.7560.

60. Deev R. V. Kletochnaya transplantaciya v programme lecheniya COVID-19: peresadka stvolovyh stromal'nyh (mezenhimal'nyh) kletok. Geny i Kletki. 2020;2:9-17. doi:https://doi.org/10.23868/202004012.

61. Barth R. F., Xu X., Buja L. M. A Call to Action: The Need for Autopsies to Determine the Full Extent of Organ Involvement Associated With COVID-19. Chest. 2020;158(1):43-44. doihttps://doi.org/10.1016/j.chest.2020.03.060

62. Hanley B., Lucas S.B., Youd E. et al. Autopsy in suspected COVID-19 cases. J. Clin. Pathol. 2020;73(5):239-42. doi:https://doi.org/10.1136/jclinpath-2020-206522.

63. Chen L., Li X., Chen M., Feng Y., Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097-1100. doihttps://doi.org/10.1093/cvr/cvaa078.

64. Pons S., Arnaud M., Loiselle M., Arrii E., Azoulay E., Zafrani L. Immune Consequences of Endothelial Cells’ Activation and Dysfunction During Sepsis. Crit Care Clin. 2020;36(2):401-413. doihttps://doi.org/10.1016/j.ccc.2019.12.001.

65. Varga Z., Flammer A.J., Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-1418. doihttps://doi.org/10.1016/S0140-6736(20)30937-5.

66. Copin M. C., Parmentier E., Duburcq T., Poissy J., Mathieu D. COVID-19 ICU and Anatomopathology Group. Time to consider histologic pattern of lung injury to treat critically ill patients with COVID-19 infection. Intensive Care Med. 2020;46(6):1124-1126. doihttps://doi.org/10.1007/s00134-020-06057-8.

67. Lodigiani C., Iapichino G., Carenzo L. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9-14. doi:10. 1016/j.thromres.2020.04.024

68. Arachchillage D. R. J., Laffan M. Abnormal Coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia J. Thromb. Haemost. 2020;18(5):1233-4. doi:https://doi.org/10.1111/jth.14768.

69. Mousavizadeh L., Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect. 2020;S1684-1182(20)30082- 7. doihttps://doi.org/10.1016/j.jmii.2020.03.022.

70. Huertas A., Montani D., Savale L. et al. Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)?. Eur Respir J. 2020;56(1):2001634. doihttps://doi.org/10.1183/13993003.01634-2020.

71. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis. 2020;18(5): 844-47. doi:https://doi.org/10.1111/jth.14820.

72. Fogarty H., Townsend L., Ni Cheallaigh C., et al. COVID-19 coagulopathy in Caucasian patients. British Journal of Haematology. 2020;189(6):1044- 1049. doi:https://doi.org/10.1111/bjh.16749.

73. McGonagle D., O’Donnell J. S., Sharif K., Emery P., Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020;2:437-459. doi:https://doi.org/10.1016/S2665-9913(20)30121-1.

74. Yokota Sh., Kuroyva E., Nishioka K. Novaya koronavirusnaya bolezn' (COVID-19) i «citokinovyy shtorm». Perspektivy effektivnogo lecheniya s tochki zreniya patofiziologii vospalitel'nogo processa. Infekcionnye bolezni: novosti, mne- niya, obuchenie. 2020;9(4):13-25. doi:https://doi.org/10.33029/2305- 3496-2020-9-4-13-25.

75. O’Sullivan J. M., Gonagle D. M., Ward S. E., Preston R., O’Donnell J. S. Endothelial cells orchestrate COVID-19 coagulopathy. Lancet Haematol. 2020;7(8):e553-e555. doihttps://doi.org/10.1016/S2352- 3026(20)30215-5.

76. Peter J. Lenting, Olivier D., Christophe V., Denis C. von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood. Enherited bleeding disorders. 2015;125:(13). 2019- 2028. doi:https://doi.org/10.1182/blood-2014-06-528406.

77. Loghmani H., Conway E. M. Exploring traditional and nontraditional roles for thrombomodulin. Blood. 2018;132(2):148-158. doihttps://doi.org/10.1182/blood-2017-12-768994.

78. Beketova T.V., Nasonov E.V. Vaskulopatiya u pacientov s COVID-19 tyazhelogo techeniya. Klinicheskaya medicina. 2020;98(5):325-333. doihttps://doi.org/10.30629/0023-2149-2020-98-5-325-333.

79. Madjid M., Safavi-Naeini P., Solomon S. D., Vardeny O. Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA Cardiol. 2020;5(7):831-840. doihttps://doi.org/10.1001/jamacardio.2020.1286.

80. Larina V. N., Golovko M. G., Larin V. G. Vliyanie koronavirusnoy infekcii (COVID-19) na serdechno-sosudistuyu sistemu. Vestnik RGMU. 2020;2:5-13. doihttps://doi.org/10.24075/vrgmu.2020.020.

81. Windyga J. COVID-19 a zaburzenia hemostazy. Med. Prakt. 2020;7-8:59-68.

82. Inciardi R.M., Lupi L., Zaccone G. Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819-824. doihttps://doi.org/10.1001/jamacardio.2020.1096.

83. Guo T., Fan Y., Chen M. Association of cardiovascular disease and myocardial injury with outcomes of patients hospitalized with 2019-coronavirus disease (COVID-19). JAMA Cardiol. 2020;5(7):751-753. doi: https://doi.org/10.1001/jamacardio.2020.1105.

84. Mao L., Jin H., Wang M. et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683-690. doi:10.1001/ jamaneurol.2020.1127.

85. Cohen M. K., Eichel R., Steiner-Birmanns D. A case of probable Parkinson’s disease after SARS-CoV-2 infection. The Lancet Neurology. 2020;19(10):804-805 doihttps://doi.org/10.1016/S1474-4422(20)30305-7.

86. Helms J., Kremer S., Merdji H., Clere-Jehl R., Schenck M., Kummerlen C. Neurologic Features in Severe SARS-CoV-2 Infection. N Engl J Med. 2020;382(23):2268-2270. doihttps://doi.org/10.1056/NEJMc2008597.

87. Paterson R. W., Brown R. L., Benjamin L. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain. 2020;143(10):3104-3120. doihttps://doi.org/10.1093/brain/awaa240.

88. Mazza M.G., De Lorenzo R., Conte C. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun. 2020;89:594-600. doihttps://doi.org/10.1016/j. bbi.2020.07.037.

89. Sriwijitalai W., Wiwanitkit V. Hearing loss and COVID-19: a note. Am J Otolaryngol 2020;41:102473. doihttps://doi.org/10.1016/j.amjoto.2020.102473.

90. Degen C., Lenarz T., Willenborg K. Acute profound sensorineural hearing loss after COVID-19 pneumonia. Mayo Clin Proc. 2020;95:1801-1803. doihttps://doi.org/10.1016/j.mayocp.2020.05.034.

91. Uranaka T., Kashio A., Ueha R. et al. Expression of ACE2, TMPRSS2, and furin in mouse ear tissue. bioRxiv. 2020. doihttps://doi.org/10.1002/lary.29324.

92. Onufriychuk O. N., Gazizova I. R., Malyugin B. E., Kuroedov A. V. Koronavirusnaya infekciya (COVID-19): oftal'mologicheskie problemy. Ob- zor literatury. Oftal'mohirurgiya. 2020;3:70-79. doihttps://doi.org/10.25276/0235-4160-2020-3-70-79.

93. Hryanin A. A., Sturov V. G., Nadeev A. P., Bocharova V. K. Kozhnye proyavleniya pri novoy koronavirusnoy infekcii COVID-19, vyzvannoy SARS-CoV-2. Obzor literatury i klinicheskie nablyudeniya. Vestnik dermatologii i venerologii. 2020; 96(3):50-58. doihttps://doi.org/10.25208/vdv1141.

94. Dvornikov A. S., Silin A. A., Gaydina T.A. Kozhnye proyavleniya pri koronavirusnoy bolezni 2019 goda (COVID-19). Arhiv' vnutrenney mediciny. 2020;10(6):422-429. doihttps://doi.org/10.20514/2226-6704- 2020-10-6-422-429.

95. Achua J. K., Chu K. Y., Ibrahim E. Histopathology and Ultrastructural Findings of Fatal COVID-19 Infections on Testis. World J Mens Health. 2021;39(1):65-74. doihttps://doi.org/10.5534/wjmh.200170.

96. Gale C., Quigley M.A., Placzek A. Characteristics and outcomes of neonatal SARS-CoV-2 (nfection in the UK: a prospective national cohort study using active surveillance. Lancet Child Adolesc Health. 2020;S2352-462. doihttps://doi.org/10.1016/S2352-4642(20)30342-4.

97. Shevel E. Conditions favoring increased COVID-19 morbidity and mortality: their common denominator and treatment. IMAJ. 2020;22:680.

98. Guan W. J., Ni Z. Y., Hu Y. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720. doi:10.1056/ NEJMoa2002032.

99. Muus C, Luecken M. D., Eraslan G., Waghray A., Heimberg G., Sikkema L. Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells. bioRxiv. 2020.;04(19):049254. doi: https://doi.org/10.1101/2020.04.19.049254. 100. Kim D., Lee J-Y., Yang J-S., Kim J. W., Kim V. N., Chang H. The architecture of SARS-CoV-2 transcriptome. Cell. May 2020;181(4).14:914-921.e10. doi:https://doi.org/10.1016/j.cell.2020.04.011.


Login or Create
* Forgot password?