In this paper we consider classical Schur transformation and inverse Schur transformation for generalized Nevanlinna functions.
indefinite metrics, Nevanlinna function, Pontryagin space, Schur transformation, reproducing kernel, factorization of rational matrix function.
1. ALPAY, D. & DIJKSMA, A. & LANGER, H. (2007) The transformation of Issai Schur and related topics in indefinite setting . Operator Theory: Advances and Applications. Birkh ̈auser Verlag, Basel ( Vol. 176.). p. 1-98.
2. ALPAY D. & DYM H. (1993) On a new class of reproducing kernel spaces and a new generalization of the Iohvidov laws. Linear Algebra Applications. (Vol.178). p. 109-183.
3. ALPAY D. & DYM H. (1996) On a new class of realization formulas and their applications. Linear Algebra Applications. (Vol. 241-243). p. 3-84.
4. ALPAY D. & GOHBERG I. (1988) Unitary rational matrix functions. Operator Theory: Advances and Applications. Birkh ̈auser Verlag, Basel ( Vol. 33). p. 175-222.
5. ALPAY D. & GOHBERG I. (2006) Discrete analogs of canonical systems with pseudoexponential potential. Definitions and formulas for he spectral matrix functions. Operator Theory: Advances and Applications. Birkha ̈user Verlag, Basel ( Vol. 161). p. 1-47.
6. ANDREISHCHEVA E. (2006) Approximation of Generalized Schur functions.International Conference "Sixth Workshop Operator Theory in Krein Spaces and Operator Polynomials": Book of abstracts. Berlin. p. 10-11.
7. DE BRANGES L. (1963) Some Hilbert spaces of analytic functions I. Trans.Amer.Math.Soc.. ( Vol. 106). p. 445-468.
8. DE BRANGES L. & ROVNYAK J. (1966) Canonical models in quantum scattering theory. Wiley. New York. p. 295-392.
9. CHAMFY C.(1958)Fonctionsm ́eromorphessurlecercleunit ́eetleurss ́eriesde Taylor,. Ann. Inst. Fourier. Vol.76. p. 211-251.“Taurida Journal of Computer Science Theory and Mathematics”, 2021, 1 Svyaz' obratnogo preobrazovaniya Shura obobschennogo klassa Nevanlinny... 47
10. DIJKSMA A. & LANGER H. & LUGER A. & SHONDIN Y. (2004) Minimal realizations of scalar generalized Nevanlinna functions related to their basic factorization. Operator Theory: Advances and Applications. Birkhauser Verlag, Basel (Vol. 154). p. 69-90.
11. DYM H. (1989) On reproducing kernel spaces, J-unitary matrix functions, interpolation and displacement rank. Operator Theory: Advances and Applications. Birkh ̈auser Verlag, Basel ( Vol. 41). p. 173-239.
12. GOHBERG I. (1986) Schur methods in operator theory and signal processing. Operator Theory: Advances and Applications. Birkha ̈user Verlag, Basel ( Vol. 18). p. 30-77.
13. IOHVIDOV I. S. & KREIN M. G. & LANGER H. (1982) Introduction to the Spectral Theory of Operators in Spaces with an Indefinite Metric. Mathematical Research, Akademie-Verlag. Berlin ( Band 9). p. 120.
14. JONAS P. (1981) On the functional calculus and the spectral function for definizable operators in Krein space . Beitrage Anal.. (Vol.16). p. 121-135.
15. KREIN M. G. (1970) U ̈ber die verallgemeinerte Rezolventen und die charakteris- tische Funktion eines isometrischen Operators in Raume Πκ . Colloquia Math. Soc. Janos Bolyai.. Tihany (Hungary) (Vol.5). p. 353-399.
16. KREIN M. G. & LANGER H. (1977) U ̈ber einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume Πκ zusammenh ̈angen. I. Einige Funktionenklassen und ihre Darstellungen. Math. Nachr.. (Vol.77). p. 187-236.
17. KREIN M. G. & LANGER H. (1981) Some propositions on analytic matrix functions related to the theory of operators in the space Πκ . Acta Sci. Math. Szeged. (Vol. 43). p. 181-205.
18. LANGER H. (1982) Spectral functions of definitizable operators in Krein spaces. Lecture Notes in Mathematics. (No948). p. 1-46.
19. SCHUR I. (1986) U ̈ber die Potenzreihen, die im Innern des Einheitkreises a ̈nkt sind. Operator Theory: Advances and Applications. Birkha ̈user Verlag, Basel (Vol. 18). p. 31-59.