MODERN VIEWS ABOUT THE IMMUNO-INDUCED PROCESS IN MUSCLES DURING PHYSICAL ACTIVITY
Abstract and keywords
Abstract (English):
According to classical concepts, the key markers of inflammation both in the body and in the muscles are cytokines such as IL-6 and IL-10. They are able to have both pro-inflammatory and anti-inflammatory effects in muscle fiber. For example, it note that after intense physical exercise, an increase in the concentration of IL-6 mRNA in monocytes was observed and did not increase after exercise, indicating that the increase in IL-6 levels during exercise is due to activation not of immune cells, but in the skeletal muscles themselves. However, later a series of experimental studies proved that even after the restoration of the normal cytokine profile in the muscles because of severe overtraining, performance also remained at a low level. As a result, it suggested that cytokines are not a limiting factor in the development of inflammation, but are part of complex functional systems, since they can produced not only during physical activity. Therefore, a current direction in sports physiology is the study of the mechanisms of development of inflammatory reactions, as well as the search for new informative markers. In accordance with this, we conducted a literature analysis, the purpose of which is to identify and substantiate new informative markers involved in the inflammatory response in muscles. This literature review examines both the classical mechanisms of the development of the inflammatory response, based on the cytokine theory, and examines new possible elements that can play a significant role in the development of this process. For example, due to an uncontrolled increase in calcium concentration during intense physical activity, calpains activated, which can cause the destruction of protein structures in muscles. Therefore, a local inflammatory reaction may occur. This effect may significantly enhanced by NF-κB, which causes muscle disturbances by increasing the transcription of muscle-specific ubiquitin ligases, as well as regulating the expression of a number of inflammatory molecules. It should also note that NF-κB is one of the activators of inducible nitrogen synthase (iNOS) in the first stages of inflammation in muscle without the participation of macrophages. Increased production of i-NOS under conditions of disruption of physiological processes in the cell will contribute to the aggravation of oxidative stress and further cellular destabilization. The resulting overproduction of NO and large amounts of ROS within the cell may contribute to the formation of the toxic molecule peroxynitrite (ONOO-). Peroxynitrite, due to its oxidative abilities, can affect the membrane of both the cell itself and the plasma reticulum, thereby causing an additional influx of exogenous calcium and release of endogenous calcium into the cytosol, aggravating this pathological process several times.An interesting aspect to study is the role of the nervus vagus (vagus nerve) in the development of inflammation in the muscle, which is one of the key regulators of the inflammatory process in the body. Thus, according to separate studies, it found that vagus nerve stimulation (VNS) reduces the release of pro-inflammatory cytokines during acute inflammation. This effect called the “cholinergic anti-inflammatory pathway.” However, its role in the regulation of muscle inflammation has poorly studied, so further study of its role in inflammation processes is an urgent scientific direction with the aim of possible use as a therapeutic platform for the correction of disorders after exposure to prolonged physical activity. It is important to emphasize that the inflammatory response in muscles in response to physical activity is a complex dynamic system in which a shift in one direction can lead to the development of a hyperimmune response or, on the contrary, reduce it. Therefore, understanding this process, as well as identifying trigger mechanisms, will in the future make it possible to increase not only the effectiveness of the training process, but also to prevent the development of pathological conditions.

Keywords:
muscles, immunological reaction, nitric oxide, cytokines, inflammation, vagus, calpain.
Text
Text (PDF): Read Download
References

1. Karstoft K., Pedersen B. K. Exercise and type 2 diabetes: focus on metabolism and inflammation. Immunol Cell Biol., 94(2), 146 (2016). doi:https://doi.org/10.1038/icb.2015.101.

2. Balducci S., Sacchetti M., Haxhi J., Orlando G., D'Errico V., Fallucca S., Menini S., Pugliese G. Physical exercise as therapy for type 2 diabetes mellitus. Diabetes Metab Res Rev., 1, 13 (2014).

3. Lavie C. J., Arena R., Swift D. L., Johannsen N. M., Sui X., Lee D. C., Earnest C. P., Church T. S., O'Keefe J. H., Milani R. V., Blair S. N. Exercise and the cardiovascular system: clinical science

4. Naseeb M. A, Volpe S. L. Protein and exercise in the prevention of sarcopenia and aging. Nutr Res., 40, 1 (2017). doi:https://doi.org/10.1016/j.nutres.2017.01.001.

5. Rhind S. G., Gannon G. A., Shephard R. J., Shek P. N. Indomethacin modulates circulating cytokine responses to strenuous exercise in humans. Cytokine., 19(3), 153 (2002). doi:https://doi.org/10.1006/cyto.2002.1954. EDN: https://elibrary.ru/BCOYZD

6. Nara H., Watanabe R. Anti-Inflammatory Effect of Muscle-Derived Interleukin-6 and Its Involvement in Lipid Metabolism. Int J Mol Sci., 22(18), 9889 (2021). doi:https://doi.org/10.3390/ijms22189889. EDN: https://elibrary.ru/FYFKQQ

7. Silveira L. S., Antunes Bde M., Minari A. L., Dos Santos R. V., Neto J. C., Lira F. S. Macrophage Polarization: Implications on Metabolic Diseases and the Role of Exercise. Crit Rev Eukaryot Gene

8. Allen J., Sun Y., Woods J. A. Exercise and the Regulation of Inflammatory Responses. Prog Mol Biol Transl Sci., 135, 337 (2015). doi:https://doi.org/10.1016/bs.pmbts.2015.07.003.

9. Hennigar S. R., McClung J. P., Pasiakos S. M. Nutritional interventions and the IL-6 response to exercise. FASEB J., 31(9), 3719 (2017). doi:https://doi.org/10.1096/fj.201700080R.

10. Peake J. M. Recovery of the immune system after exercise. J Appl Physiol (1985)., 122(5), 1077 (2017). doi:https://doi.org/10.1152/japplphysiol.00622.2016.

11. Roca-Rodrguez M. M., Garrido-Snchez L., Garca-Almeida J.M., Ruiz-Nava J., Alcaide-Torres J., Gmez-Gonzlez A., Montiel-Trujillo A., Tinahones-Madueo F. Effects of exercise on inflammation in cardiac

12. Pedersen B. K. Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest., 47(8), 600 (2017). doi:https://doi.org/10.1111/eci.12781.

13. Oishi Y., Manabe I. Macrophages in inflammation, repair and regeneration. Int Immunol., 30(11), 511 (2018). doi:https://doi.org/10.1093/intimm/dxy054. EDN: https://elibrary.ru/KAPOIT

14. Gleeson M., Bishop N. C., Stensel D. J., Lindley M. R., Mastana S. S., Nimmo M. A. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of

15. Lightfoot A.P., Cooper R.G. The role of myokines in muscle health and disease. Curr Opin Rheumatol., 28(6), 661 (2016). doi:https://doi.org/10.1097/BOR.0000000000000337.

16. Shaw D. M., Merien F., Braakhuis A., Dulson D. T-cells and their cytokine production: The anti-inflammatory and immunosuppressive effects of strenuous exercise. Cytokine, 104, 136 (2018).

17. Steensberg A., van Hall G., Osada T., Sacchetti M., Saltin B., Klarlund Pedersen B. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase

18. Chen L., Liu H., Yuan M., Lu W., Wang J., Wang T. The roles of interleukins in perfusion recovery after peripheral arterial disease. Biosci Rep., 38(1), BSR20171455 (2018). doi:https://doi.org/10.1042/BSR20171455.

19. Zhang J. M., An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin., 45(2), 27 (2007). doi:https://doi.org/10.1097/AIA.0b013e318034194e.

20. Cannon J. G., Kluger M. J. Endogenous pyrogen activity in human plasma after exercise. Science., 220(4597), 617 (1983). doi:https://doi.org/10.1126/science.6836306. EDN: https://elibrary.ru/IDRYBB

21. Lightfoot A. P., Cooper R. G. The role of myokines in muscle health and disease. Curr Opin Rheumatol., 28(6), 661 (2016). doi:https://doi.org/10.1097/BOR.0000000000000337.

22. Pedersen B. K., Febbraio M. A. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev., 88(4), 1379 (2008). doi:https://doi.org/10.1152/physrev.90100.2007.

23. Aguer C., Loro E., Di Raimondo D. Editorial: The Role of the Muscle Secretome in Health and Disease. Front Physiol., 811, 1101 (2020). doi:https://doi.org/10.3389/fphys.2020.01101.

24. Furuichi Y., Manabe Y., Takagi M., Aoki M., Fujii N. L. Evidence for acute contraction-induced myokine secretion by C2C12 myotubes. PLoS One., 13(10), 1 (2018).

25. Nedachi T., Fujita H., Kanzaki M. Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle. Am J Physiol Endocrinol Metab., 295(5), E1191 (2008).

26. Manabe Y., Ogino S., Ito M., Furuichi Y., Takagi M., Yamada M., Goto-Inoue N., Ono Y., Fujii N. L. Evaluation of an in vitro muscle contraction model in mouse primary cultured myotubes. Anal Biochem., 497, 36

27. Peake J. M., Della Gatta P., Suzuki K., Nieman D. C. Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exerc Immunol Rev., 21, 8 (2015). PMID: 25826432. EDN: https://elibrary.ru/YDROFK

28. Scott L. J. Tocilizumab: A Review in Rheumatoid Arthritis. Drugs., 77(17), 1865 (2017). doi:https://doi.org/10.1007/s40265-017-0829-7. EDN: https://elibrary.ru/YKDBCR

29. Keller C., Steensberg A., Pilegaard H., Osada T., Saltin B., Pedersen B. K., Neufer P. D. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content.

30. Pedersen B. K., Steensberg A., Schjerling P. Muscle-derived interleukin-6: possible biological effects. J Physiol., 536(Pt 2), 329 (2001). doi:https://doi.org/10.1111/j.1469-7793.2001.0329c.xd.

31. Hiscock N., Chan M. H., Bisucci T., Darby I. A., Febbraio M. A. Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: evidence of fiber type specificity.

32. Bruunsgaard H., Galbo H., Halkjaer-Kristensen J., Johansen T. L., MacLean D. A., Pedersen B. K. Exercise-induced increase in serum interleukin-6 in humans is related to muscle damage.

33. Smith L. L. Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress? Med Sci Sports Exerc., 32(2), 317 (2000). doi:https://doi.org/10.1097/00005768-200002000-00011.

34. da Rocha A. L., Pereira B. C., Teixeira G. R., Pinto A. P., Frantz F. G., Elias L. L. K. Treadmill Slope Modulates Inflammation, Fiber Type Composition, Androgen, and Glucocorticoid Receptors in the Skeletal

35. Pinton P., Giorgi C., Siviero R., Zecchini E., Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene., 27(50), 6407 (2008). doi:https://doi.org/10.1038/onc.2008.308. EDN: https://elibrary.ru/YAVVMV

36. Kuo I. Y., Ehrlich B. E. Signaling in muscle contraction. Cold Spring Harb Perspect Biol., 7(2), 1 (2015). doi:https://doi.org/10.1101/cshperspect.a006023. EDN: https://elibrary.ru/YCUJTY

37. Tengan C. H., Rodrigues G. S., Godinho R. O. Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function. Int J Mol Sci., 13(12), 17160 (2012). doi:https://doi.org/10.3390/ijms131217160. EDN: https://elibrary.ru/RKZULB

38. Bejma J., Ji L. L. Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol (1985)., 87(1), 465 (1999). doi:https://doi.org/10.1152/jappl.1999.87.1.465.

39. Tidball J. G. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol., 288(2), 345 (2005). doi:https://doi.org/10.1152/ajpregu.00454.2004.

40. Ono Y., Saido T. C., Sorimachi H. Calpain research for drug discovery: Challenges and potential. Nat Rev Drug Discov., 15, 854 (2016) doihttps://doi.org/10.1038/nrd.2016.212. EDN: https://elibrary.ru/YWMVVT

41. Murphy R. M. Calpains, skeletal muscle function and exercise. Clin Exp Pharmacol Physiol., 37, 385 (2010). doihttps://doi.org/10.1111/j.1440-1681.2009.05310.x.

42. Lek A., Evesson F. J., Lemckert F. A., Redpath G. M., Lueders A. K., Turnbull L. Calpains, cleaved mini-dysferlinC72, and L-type channels underpin calcium-dependent muscle membrane repair.

43. Smuder A. J., Kavazis A. N., Hudson M. B., Nelson W. B., Powers S. K. Oxidation enhances myofibrillar protein degradation via calpain and caspase-3. Free Radic Biol Med., 49(7), 1152 (2010). DOI: https://doi.org/10.1016/j.freeradbiomed.2010.06.025; EDN: https://elibrary.ru/NZVCXP

44. Cerqueira., Marinho D. A., Neiva H. P., Loureno O. Inflammatory Effects of High and Moderate Intensity Exercise-A Systematic Review. Front Physiol., 10, 1550 (2020). doi:https://doi.org/10.3389/fphys.2019.01550.

45. Kumar A., Takada Y., Boriek A. M., Aggarwal B. B. Nuclear factor-kappaB: its role in health and disease. J Mol Med (Berl)., 82(7), 434 (2004). doi:https://doi.org/10.1007/s00109-004-0555-y.

46. Li H., Malhotra S., Kumar A. Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med (Berl)., 86(10), 1113 (2008). doi:https://doi.org/10.1007/s00109-008-0373-8. EDN: https://elibrary.ru/FEKESC

47. Di Marco S., Cammas A., Lian X. J., Kovacs E. N., Ma J. F., Hall D. T. The translation inhibitor pateamine A prevents cachexia-induced muscle wasting in mice. Nat Commun., 3, 896 (2012).

48. Ma J. F., Sanchez B. J., Hall D. T., Tremblay A. K., Di Marco S., Gallouzi I. E. STAT3 promotes IFNγ/TNFα-induced muscle wasting in an NF-κB-dependent and IL-6-independent manner. EMBO Mol

49. Buck M., Chojkier M. Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J., 15(8),

50. Nakazawa H., Chang K., Shinozaki S., Yasukawa T., Ishimaru K., Yasuhara S. iNOS as a Driver of Inflammation and Apoptosis in Mouse Skeletal Muscle after Burn Injury: Possible Involvement of Sirt1

51. Zhang W., Huang Q., Zeng Z., Wu J., Zhang Y., Chen Z. Sirt1 Inhibits Oxidative Stress in Vascular Endothelial Cells. Oxid Med Cell Longev., 2017, 7543973 (2017). doi:https://doi.org/10.1155/2017/7543973.

52. Hall D. T., Ma J. F., Marco S. D., Gallouzi I. E. Inducible nitric oxide synthase (iNOS) in muscle wasting syndrome, sarcopenia, and cachexia. Aging (Albany NY)., 3(8), 702 (2011). doi:https://doi.org/10.18632/aging.100358.

53. Judge A. R., Koncarevic A., Hunter R. B., Liou H. C., Jackman R. W., Kandarian S. C. Role for IkappaBalpha, but not c-Rel, in skeletal muscle atrophy. Am J Physiol Cell Physiol., 292(1), C372 (2007).

54. Mourkioti F., Kratsios P., Luedde T., Song Y. H., Delafontaine P., Adami R., Parente V., Bottinelli R., Pasparakis M., Rosenthal N. Targeted ablation of IKK2 improves skeletal muscle strength, maintains

55. Fox D. K., Ebert S. M., Bongers K. S., Dyle M. C., Bullard S. A., Dierdorff J. M., Kunkel S. D., Adams C.M.p53 and ATF4 mediate distinct and additive pathways to skeletal muscle atrophy during limb

56. Chen J., Zhou Y., Mueller-Steiner S., Chen L. F., Kwon H., Yi S. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. The Journal of biological

57. Lysenkov S. P., Muzhenya D. V., Tuguz A. R., Urakova T. U., Shumilov D. S., Thakushinov I. A., Thakushinov R. A., Tatarkova E. A., Urakova D. M. Cholinergic deficiency in the cholinergic system as a

58. Boccini F., Herold S. Mechanistic studies of the oxidation of oxyhemoglobin by peroxynitrite. Biochemistry, 43, 16393 (2004). https://doi.org/10.1021/bi0482250. EDN: https://elibrary.ru/MFSGRV

59. Kojouharov H. V., Chen-Charpentier B. M., Solis F. J., Biguetti C., Brotto M. A simple model of immune and muscle cell crosstalk during muscle regeneration. Math Biosci., 333, 108543 (2021). DOI: https://doi.org/10.1016/j.mbs.2021.108543; EDN: https://elibrary.ru/LUADIL

60. de Oliveira A. K., Pramoonjago P., Rucavado A., Moskaluk C., Silva D. T., Escalante T., Gutirrez J. M., Fox J. W. Mapping the Immune Cell Microenvironment with Spatial Profiling in Muscle Tissue Injected with the

61. Ostrowski K., Rohde T., Asp S., Schjerling P., Pedersen B. K. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol., 515(Pt 1), 287 (1999). doi:https://doi.org/10.1111/j.14697793.1999.287ad.x.

62. Dobbs R. J., Charlett A., Purkiss A. G., Dobbs S. M., Weller C., Peterson D. W. Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurol Scand., 100(1), 34 (1999).

63. Kluth D. C., Rees A. J. Inhibiting inflammatory cytokines. Semin Nephrol., 16(6), 576 (1996). PMID: 9125802.

64. Muoz-Cnoves P., Scheele C., Pedersen B. K., Serrano A. L. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J., 280(17), 4131 (2013). doi:https://doi.org/10.1111/febs.12338

65. Daou H. N. Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation. Am J Physiol Regul Integr Comp Physiol., 318(2), 296 (2020).

66. Nara H., Watanabe R. Anti-Inflammatory Effect of Muscle-Derived Interleukin-6 and Its Involvement in Lipid Metabolism. Int J Mol Sci., 22(18), 9889 (2021). doi:https://doi.org/10.3390/ijms22189889. EDN: https://elibrary.ru/FYFKQQ

67. Schindler R., Mancilla J., Endres S., Ghorbani R., Clark S. C., Dinarello C. A. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human

68. Matthys P., Mitera T., Heremans H., Van Damme J., Billiau A. Anti-gamma interferon and anti-interleukin-6 antibodies affect staphylococcal enterotoxin B-induced weight loss, hypoglycemia, and

69. Starkie R., Ostrowski S. R., Jauffred S., Febbraio M., Pedersen B. K. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J., 17(8), 884 (2003).

70. Baeza-Raja B., Muoz-Cnoves P. p38 MAPK-induced nuclear factor-kappaB activity is required for skeletal muscle differentiation: role of interleukin-6. Mol Biol Cell., 15(4), 2013 (2004).

71. McCafferty D. M, Mudgett J. S., Swain M. G., Kubes P. Inducible nitric oxide synthase plays a critical role in resolving intestinal inflammation. Gastroenterology., 112(3), 1022 (1997).

72. Rigamonti E., Touvier T., Clementi E., Manfredi A. A., Brunelli S., Rovere-Querini P. Requirement of inducible nitric oxide synthase for skeletal muscle regeneration after acute damage. J Immunol., 190(4),

73. Rovere-Querini P., Clementi E., Brunelli S. Nitric oxide and muscle repair: multiple actions converging on therapeutic efficacy. Eur J Pharmacol., 730, 181 (2014). doi:https://doi.org/10.1016/j.ejphar.2013.11.006

74. Kawashima M., Miyakawa M., Sugiyama M., Miyoshi M., Arakawa T. Unloading during skeletal muscle regeneration retards iNOS-expressing macrophage recruitment and perturbs satellite cell accumulation.

75. Olofsson P. S., Levine Y. A., Caravaca A. Single-Pulse and Unidirectional Electrical Activation of the Cervical Vagus Nerve Reduces Tumor Necrosis Factor in Endotoxemia. Bioelectron Med., 2, 37 (2015).

76. Pavlov V. A., Chavan S. S., Tracey K. J. Molecular and Functional Neuroscience in Immunity. Annu Rev Immunol., 36, 783 (2018). doi:https://doi.org/10.1146/annurev-immunol-042617-053158 EDN: https://elibrary.ru/YHRFNB

77. Caravaca A. S., Gallina A. L., Tarnawski L., Tracey K. J., Pavlov V. A., Levine Y. A. An Effective Method for Acute Vagus Nerve Stimulation in Experimental Inflammation. Front Neurosci., 3, 877

78. Tracey K. J. Hacking the inflammatory refelex. Lancet Neurol., 3, 237 (2021). doihttps://doi.org/10.1016/s2665-9913(20)30448-3. EDN: https://elibrary.ru/ZMBTIQ

79. Pavlov V. A., Tracey K. J. The vagus nerve and the inflammatory reflex--linking immunity and metabolism. Nat Rev Endocrinol., 8(12), 743 (2012). doi:https://doi.org/10.1038/nrendo.2012.189.

80. Lai Y., Deng J., Wang M., Zhou L., Meng G. Vagus nerve stimulation protects against acute liver injury induced by renal ischemia reperfusion via antioxidant stress and anti-inflammation. Biomed

81. Inoue T., Abe C., Sung S. S., Moscalu S., Jankowski J., Huang L., Ye H., Rosin D. L., Guyenet P. G., Okusa M. D. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury

82. Zhang Y., Li H., Wang M., Meng G., Wang Z., Deng J. Vagus Nerve Stimulation Attenuates Acute Skeletal Muscle Injury Induced by Ischemia-Reperfusion in Rats. Oxid Med Cell Longev, 2019, 9208949

83. Xin Y., Zhang Y., Deng S., Hu X. Vagus Nerve Stimulation Attenuates Acute Skeletal Muscle Injury Induced by Hepatic Ischemia/Reperfusion Injury in Rats. Front Pharmacol., 12, 756997 (2022).

84. Knight C. M., Gutierrez-Juarez R., Lam T. K., Arrieta-Cruz I., Huang L, Schwartz G., Barzilai N., Rossetti L. Mediobasal Hypothalamic SIRT1 Is Essential for Resveratrol's Effects on Insulin Action in Rats.

85. Corona B. T., Balog E. M., Doyle J. A., Rupp J. C., Luke R. C., Ingalls C. P. Junctophilin damage contributes to early strength deficits and EC coupling failure after eccentric contractions. Am J Physiol

86. Franzini-Armstrong C., Jorgensen A. O. Structure and development of E-C coupling units in skeletal muscle. Ann Rev Physiol., 56, 509 (1994). doihttps://doi.org/10.1146/annurev.ph.56.030194.002453

87. Kanzaki K., Watanabe D., Kuratani M., Yamada T., Matsunaga S., Wada M. Role of calpain in eccentric contraction-induced proteolysis of Ca2+-regulatory proteins and force depression in rat fast-twitch

88. Ito K., Komazaki S., Sasamoto K., Yoshida M., Nishi M., Kitamura K., Takeshima H. Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1. J Cell Biol., 154(5), 1059 (2001).

Login or Create
* Forgot password?