Регулярная физическая нагрузка оказывает положительное влияние на организм и мышцы в целом, позволяя повысить выносливость, силу, а также предупредить развитие целого ряда заболеваний. Однако действие длительных нагрузок может спровоцировать развитие воспалительных реакций, которые способны вызвать снижение эффективности работы мышечного волокна. Согласно классическим представлениям, ключевыми маркерами воспаления как в организме, так и в мышцах являются цитокины. Однако современные данные доказывают, что цитокины не являются лимитирующим фактором развития воспаления, а входят в состав сложных функциональных систем, так как способны продуцироваться не только при физической нагрузке. В рамках данной публикации нами проведен теоретический анализ возможного механизма развития воспалительной реакции в мышцах с целью выявления ключевых элементов данного процесса.
мышцы, иммунологическая реакция, оксид азота, цитокины, воспаление, вагус, кальпаин.
1. Karstoft K., Pedersen B. K. Exercise and type 2 diabetes: focus on metabolism and inflammation. Immunol Cell Biol., 94(2), 146 (2016). doi:https://doi.org/10.1038/icb.2015.101.
2. Balducci S., Sacchetti M., Haxhi J., Orlando G., D'Errico V., Fallucca S., Menini S., Pugliese G. Physical exercise as therapy for type 2 diabetes mellitus. Diabetes Metab Res Rev., 1, 13 (2014).
3. Lavie C. J., Arena R., Swift D. L., Johannsen N. M., Sui X., Lee D. C., Earnest C. P., Church T. S., O'Keefe J. H., Milani R. V., Blair S. N. Exercise and the cardiovascular system: clinical science
4. Naseeb M. A, Volpe S. L. Protein and exercise in the prevention of sarcopenia and aging. Nutr Res., 40, 1 (2017). doi:https://doi.org/10.1016/j.nutres.2017.01.001.
5. Rhind S. G., Gannon G. A., Shephard R. J., Shek P. N. Indomethacin modulates circulating cytokine responses to strenuous exercise in humans. Cytokine., 19(3), 153 (2002). doi:https://doi.org/10.1006/cyto.2002.1954. EDN: https://elibrary.ru/BCOYZD
6. Nara H., Watanabe R. Anti-Inflammatory Effect of Muscle-Derived Interleukin-6 and Its Involvement in Lipid Metabolism. Int J Mol Sci., 22(18), 9889 (2021). doi:https://doi.org/10.3390/ijms22189889. EDN: https://elibrary.ru/FYFKQQ
7. Silveira L. S., Antunes Bde M., Minari A. L., Dos Santos R. V., Neto J. C., Lira F. S. Macrophage Polarization: Implications on Metabolic Diseases and the Role of Exercise. Crit Rev Eukaryot Gene
8. Allen J., Sun Y., Woods J. A. Exercise and the Regulation of Inflammatory Responses. Prog Mol Biol Transl Sci., 135, 337 (2015). doi:https://doi.org/10.1016/bs.pmbts.2015.07.003.
9. Hennigar S. R., McClung J. P., Pasiakos S. M. Nutritional interventions and the IL-6 response to exercise. FASEB J., 31(9), 3719 (2017). doi:https://doi.org/10.1096/fj.201700080R.
10. Peake J. M. Recovery of the immune system after exercise. J Appl Physiol (1985)., 122(5), 1077 (2017). doi:https://doi.org/10.1152/japplphysiol.00622.2016.
11. Roca-Rodrguez M. M., Garrido-Snchez L., Garca-Almeida J.M., Ruiz-Nava J., Alcaide-Torres J., Gmez-Gonzlez A., Montiel-Trujillo A., Tinahones-Madueo F. Effects of exercise on inflammation in cardiac
12. Pedersen B. K. Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest., 47(8), 600 (2017). doi:https://doi.org/10.1111/eci.12781.
13. Oishi Y., Manabe I. Macrophages in inflammation, repair and regeneration. Int Immunol., 30(11), 511 (2018). doi:https://doi.org/10.1093/intimm/dxy054. EDN: https://elibrary.ru/KAPOIT
14. Gleeson M., Bishop N. C., Stensel D. J., Lindley M. R., Mastana S. S., Nimmo M. A. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of
15. Lightfoot A.P., Cooper R.G. The role of myokines in muscle health and disease. Curr Opin Rheumatol., 28(6), 661 (2016). doi:https://doi.org/10.1097/BOR.0000000000000337.
16. Shaw D. M., Merien F., Braakhuis A., Dulson D. T-cells and their cytokine production: The anti-inflammatory and immunosuppressive effects of strenuous exercise. Cytokine, 104, 136 (2018).
17. Steensberg A., van Hall G., Osada T., Sacchetti M., Saltin B., Klarlund Pedersen B. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase
18. Chen L., Liu H., Yuan M., Lu W., Wang J., Wang T. The roles of interleukins in perfusion recovery after peripheral arterial disease. Biosci Rep., 38(1), BSR20171455 (2018). doi:https://doi.org/10.1042/BSR20171455.
19. Zhang J. M., An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin., 45(2), 27 (2007). doi:https://doi.org/10.1097/AIA.0b013e318034194e.
20. Cannon J. G., Kluger M. J. Endogenous pyrogen activity in human plasma after exercise. Science., 220(4597), 617 (1983). doi:https://doi.org/10.1126/science.6836306. EDN: https://elibrary.ru/IDRYBB
21. Lightfoot A. P., Cooper R. G. The role of myokines in muscle health and disease. Curr Opin Rheumatol., 28(6), 661 (2016). doi:https://doi.org/10.1097/BOR.0000000000000337.
22. Pedersen B. K., Febbraio M. A. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev., 88(4), 1379 (2008). doi:https://doi.org/10.1152/physrev.90100.2007.
23. Aguer C., Loro E., Di Raimondo D. Editorial: The Role of the Muscle Secretome in Health and Disease. Front Physiol., 811, 1101 (2020). doi:https://doi.org/10.3389/fphys.2020.01101.
24. Furuichi Y., Manabe Y., Takagi M., Aoki M., Fujii N. L. Evidence for acute contraction-induced myokine secretion by C2C12 myotubes. PLoS One., 13(10), 1 (2018).
25. Nedachi T., Fujita H., Kanzaki M. Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle. Am J Physiol Endocrinol Metab., 295(5), E1191 (2008).
26. Manabe Y., Ogino S., Ito M., Furuichi Y., Takagi M., Yamada M., Goto-Inoue N., Ono Y., Fujii N. L. Evaluation of an in vitro muscle contraction model in mouse primary cultured myotubes. Anal Biochem., 497, 36
27. Peake J. M., Della Gatta P., Suzuki K., Nieman D. C. Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exerc Immunol Rev., 21, 8 (2015). PMID: 25826432. EDN: https://elibrary.ru/YDROFK
28. Scott L. J. Tocilizumab: A Review in Rheumatoid Arthritis. Drugs., 77(17), 1865 (2017). doi:https://doi.org/10.1007/s40265-017-0829-7. EDN: https://elibrary.ru/YKDBCR
29. Keller C., Steensberg A., Pilegaard H., Osada T., Saltin B., Pedersen B. K., Neufer P. D. Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content.
30. Pedersen B. K., Steensberg A., Schjerling P. Muscle-derived interleukin-6: possible biological effects. J Physiol., 536(Pt 2), 329 (2001). doi:https://doi.org/10.1111/j.1469-7793.2001.0329c.xd.
31. Hiscock N., Chan M. H., Bisucci T., Darby I. A., Febbraio M. A. Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: evidence of fiber type specificity.
32. Bruunsgaard H., Galbo H., Halkjaer-Kristensen J., Johansen T. L., MacLean D. A., Pedersen B. K. Exercise-induced increase in serum interleukin-6 in humans is related to muscle damage.
33. Smith L. L. Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress? Med Sci Sports Exerc., 32(2), 317 (2000). doi:https://doi.org/10.1097/00005768-200002000-00011.
34. da Rocha A. L., Pereira B. C., Teixeira G. R., Pinto A. P., Frantz F. G., Elias L. L. K. Treadmill Slope Modulates Inflammation, Fiber Type Composition, Androgen, and Glucocorticoid Receptors in the Skeletal
35. Pinton P., Giorgi C., Siviero R., Zecchini E., Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene., 27(50), 6407 (2008). doi:https://doi.org/10.1038/onc.2008.308. EDN: https://elibrary.ru/YAVVMV
36. Kuo I. Y., Ehrlich B. E. Signaling in muscle contraction. Cold Spring Harb Perspect Biol., 7(2), 1 (2015). doi:https://doi.org/10.1101/cshperspect.a006023. EDN: https://elibrary.ru/YCUJTY
37. Tengan C. H., Rodrigues G. S., Godinho R. O. Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function. Int J Mol Sci., 13(12), 17160 (2012). doi:https://doi.org/10.3390/ijms131217160. EDN: https://elibrary.ru/RKZULB
38. Bejma J., Ji L. L. Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol (1985)., 87(1), 465 (1999). doi:https://doi.org/10.1152/jappl.1999.87.1.465.
39. Tidball J. G. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol., 288(2), 345 (2005). doi:https://doi.org/10.1152/ajpregu.00454.2004.
40. Ono Y., Saido T. C., Sorimachi H. Calpain research for drug discovery: Challenges and potential. Nat Rev Drug Discov., 15, 854 (2016) doihttps://doi.org/10.1038/nrd.2016.212. EDN: https://elibrary.ru/YWMVVT
41. Murphy R. M. Calpains, skeletal muscle function and exercise. Clin Exp Pharmacol Physiol., 37, 385 (2010). doihttps://doi.org/10.1111/j.1440-1681.2009.05310.x.
42. Lek A., Evesson F. J., Lemckert F. A., Redpath G. M., Lueders A. K., Turnbull L. Calpains, cleaved mini-dysferlinC72, and L-type channels underpin calcium-dependent muscle membrane repair.
43. Smuder A. J., Kavazis A. N., Hudson M. B., Nelson W. B., Powers S. K. Oxidation enhances myofibrillar protein degradation via calpain and caspase-3. Free Radic Biol Med., 49(7), 1152 (2010). DOI: https://doi.org/10.1016/j.freeradbiomed.2010.06.025; EDN: https://elibrary.ru/NZVCXP
44. Cerqueira., Marinho D. A., Neiva H. P., Loureno O. Inflammatory Effects of High and Moderate Intensity Exercise-A Systematic Review. Front Physiol., 10, 1550 (2020). doi:https://doi.org/10.3389/fphys.2019.01550.
45. Kumar A., Takada Y., Boriek A. M., Aggarwal B. B. Nuclear factor-kappaB: its role in health and disease. J Mol Med (Berl)., 82(7), 434 (2004). doi:https://doi.org/10.1007/s00109-004-0555-y.
46. Li H., Malhotra S., Kumar A. Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med (Berl)., 86(10), 1113 (2008). doi:https://doi.org/10.1007/s00109-008-0373-8. EDN: https://elibrary.ru/FEKESC
47. Di Marco S., Cammas A., Lian X. J., Kovacs E. N., Ma J. F., Hall D. T. The translation inhibitor pateamine A prevents cachexia-induced muscle wasting in mice. Nat Commun., 3, 896 (2012).
48. Ma J. F., Sanchez B. J., Hall D. T., Tremblay A. K., Di Marco S., Gallouzi I. E. STAT3 promotes IFNγ/TNFα-induced muscle wasting in an NF-κB-dependent and IL-6-independent manner. EMBO Mol
49. Buck M., Chojkier M. Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J., 15(8),
50. Nakazawa H., Chang K., Shinozaki S., Yasukawa T., Ishimaru K., Yasuhara S. iNOS as a Driver of Inflammation and Apoptosis in Mouse Skeletal Muscle after Burn Injury: Possible Involvement of Sirt1
51. Zhang W., Huang Q., Zeng Z., Wu J., Zhang Y., Chen Z. Sirt1 Inhibits Oxidative Stress in Vascular Endothelial Cells. Oxid Med Cell Longev., 2017, 7543973 (2017). doi:https://doi.org/10.1155/2017/7543973.
52. Hall D. T., Ma J. F., Marco S. D., Gallouzi I. E. Inducible nitric oxide synthase (iNOS) in muscle wasting syndrome, sarcopenia, and cachexia. Aging (Albany NY)., 3(8), 702 (2011). doi:https://doi.org/10.18632/aging.100358.
53. Judge A. R., Koncarevic A., Hunter R. B., Liou H. C., Jackman R. W., Kandarian S. C. Role for IkappaBalpha, but not c-Rel, in skeletal muscle atrophy. Am J Physiol Cell Physiol., 292(1), C372 (2007).
54. Mourkioti F., Kratsios P., Luedde T., Song Y. H., Delafontaine P., Adami R., Parente V., Bottinelli R., Pasparakis M., Rosenthal N. Targeted ablation of IKK2 improves skeletal muscle strength, maintains
55. Fox D. K., Ebert S. M., Bongers K. S., Dyle M. C., Bullard S. A., Dierdorff J. M., Kunkel S. D., Adams C.M.p53 and ATF4 mediate distinct and additive pathways to skeletal muscle atrophy during limb
56. Chen J., Zhou Y., Mueller-Steiner S., Chen L. F., Kwon H., Yi S. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. The Journal of biological
57. Lysenkov S. P., Muzhenya D. V., Tuguz A. R., Urakova T. U., Shumilov D. S., Thakushinov I. A., Thakushinov R. A., Tatarkova E. A., Urakova D. M. Cholinergic deficiency in the cholinergic system as a
58. Boccini F., Herold S. Mechanistic studies of the oxidation of oxyhemoglobin by peroxynitrite. Biochemistry, 43, 16393 (2004). https://doi.org/10.1021/bi0482250. EDN: https://elibrary.ru/MFSGRV
59. Kojouharov H. V., Chen-Charpentier B. M., Solis F. J., Biguetti C., Brotto M. A simple model of immune and muscle cell crosstalk during muscle regeneration. Math Biosci., 333, 108543 (2021). DOI: https://doi.org/10.1016/j.mbs.2021.108543; EDN: https://elibrary.ru/LUADIL
60. de Oliveira A. K., Pramoonjago P., Rucavado A., Moskaluk C., Silva D. T., Escalante T., Gutirrez J. M., Fox J. W. Mapping the Immune Cell Microenvironment with Spatial Profiling in Muscle Tissue Injected with the
61. Ostrowski K., Rohde T., Asp S., Schjerling P., Pedersen B. K. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol., 515(Pt 1), 287 (1999). doi:https://doi.org/10.1111/j.14697793.1999.287ad.x.
62. Dobbs R. J., Charlett A., Purkiss A. G., Dobbs S. M., Weller C., Peterson D. W. Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurol Scand., 100(1), 34 (1999).
63. Kluth D. C., Rees A. J. Inhibiting inflammatory cytokines. Semin Nephrol., 16(6), 576 (1996). PMID: 9125802.
64. Muoz-Cnoves P., Scheele C., Pedersen B. K., Serrano A. L. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J., 280(17), 4131 (2013). doi:https://doi.org/10.1111/febs.12338
65. Daou H. N. Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation. Am J Physiol Regul Integr Comp Physiol., 318(2), 296 (2020).
66. Nara H., Watanabe R. Anti-Inflammatory Effect of Muscle-Derived Interleukin-6 and Its Involvement in Lipid Metabolism. Int J Mol Sci., 22(18), 9889 (2021). doi:https://doi.org/10.3390/ijms22189889. EDN: https://elibrary.ru/FYFKQQ
67. Schindler R., Mancilla J., Endres S., Ghorbani R., Clark S. C., Dinarello C. A. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human
68. Matthys P., Mitera T., Heremans H., Van Damme J., Billiau A. Anti-gamma interferon and anti-interleukin-6 antibodies affect staphylococcal enterotoxin B-induced weight loss, hypoglycemia, and
69. Starkie R., Ostrowski S. R., Jauffred S., Febbraio M., Pedersen B. K. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J., 17(8), 884 (2003).
70. Baeza-Raja B., Muoz-Cnoves P. p38 MAPK-induced nuclear factor-kappaB activity is required for skeletal muscle differentiation: role of interleukin-6. Mol Biol Cell., 15(4), 2013 (2004).
71. McCafferty D. M, Mudgett J. S., Swain M. G., Kubes P. Inducible nitric oxide synthase plays a critical role in resolving intestinal inflammation. Gastroenterology., 112(3), 1022 (1997).
72. Rigamonti E., Touvier T., Clementi E., Manfredi A. A., Brunelli S., Rovere-Querini P. Requirement of inducible nitric oxide synthase for skeletal muscle regeneration after acute damage. J Immunol., 190(4),
73. Rovere-Querini P., Clementi E., Brunelli S. Nitric oxide and muscle repair: multiple actions converging on therapeutic efficacy. Eur J Pharmacol., 730, 181 (2014). doi:https://doi.org/10.1016/j.ejphar.2013.11.006
74. Kawashima M., Miyakawa M., Sugiyama M., Miyoshi M., Arakawa T. Unloading during skeletal muscle regeneration retards iNOS-expressing macrophage recruitment and perturbs satellite cell accumulation.
75. Olofsson P. S., Levine Y. A., Caravaca A. Single-Pulse and Unidirectional Electrical Activation of the Cervical Vagus Nerve Reduces Tumor Necrosis Factor in Endotoxemia. Bioelectron Med., 2, 37 (2015).
76. Pavlov V. A., Chavan S. S., Tracey K. J. Molecular and Functional Neuroscience in Immunity. Annu Rev Immunol., 36, 783 (2018). doi:https://doi.org/10.1146/annurev-immunol-042617-053158 EDN: https://elibrary.ru/YHRFNB
77. Caravaca A. S., Gallina A. L., Tarnawski L., Tracey K. J., Pavlov V. A., Levine Y. A. An Effective Method for Acute Vagus Nerve Stimulation in Experimental Inflammation. Front Neurosci., 3, 877
78. Tracey K. J. Hacking the inflammatory refelex. Lancet Neurol., 3, 237 (2021). doihttps://doi.org/10.1016/s2665-9913(20)30448-3. EDN: https://elibrary.ru/ZMBTIQ
79. Pavlov V. A., Tracey K. J. The vagus nerve and the inflammatory reflex--linking immunity and metabolism. Nat Rev Endocrinol., 8(12), 743 (2012). doi:https://doi.org/10.1038/nrendo.2012.189.
80. Lai Y., Deng J., Wang M., Zhou L., Meng G. Vagus nerve stimulation protects against acute liver injury induced by renal ischemia reperfusion via antioxidant stress and anti-inflammation. Biomed
81. Inoue T., Abe C., Sung S. S., Moscalu S., Jankowski J., Huang L., Ye H., Rosin D. L., Guyenet P. G., Okusa M. D. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury
82. Zhang Y., Li H., Wang M., Meng G., Wang Z., Deng J. Vagus Nerve Stimulation Attenuates Acute Skeletal Muscle Injury Induced by Ischemia-Reperfusion in Rats. Oxid Med Cell Longev, 2019, 9208949
83. Xin Y., Zhang Y., Deng S., Hu X. Vagus Nerve Stimulation Attenuates Acute Skeletal Muscle Injury Induced by Hepatic Ischemia/Reperfusion Injury in Rats. Front Pharmacol., 12, 756997 (2022).
84. Knight C. M., Gutierrez-Juarez R., Lam T. K., Arrieta-Cruz I., Huang L, Schwartz G., Barzilai N., Rossetti L. Mediobasal Hypothalamic SIRT1 Is Essential for Resveratrol's Effects on Insulin Action in Rats.
85. Corona B. T., Balog E. M., Doyle J. A., Rupp J. C., Luke R. C., Ingalls C. P. Junctophilin damage contributes to early strength deficits and EC coupling failure after eccentric contractions. Am J Physiol
86. Franzini-Armstrong C., Jorgensen A. O. Structure and development of E-C coupling units in skeletal muscle. Ann Rev Physiol., 56, 509 (1994). doihttps://doi.org/10.1146/annurev.ph.56.030194.002453
87. Kanzaki K., Watanabe D., Kuratani M., Yamada T., Matsunaga S., Wada M. Role of calpain in eccentric contraction-induced proteolysis of Ca2+-regulatory proteins and force depression in rat fast-twitch
88. Ito K., Komazaki S., Sasamoto K., Yoshida M., Nishi M., Kitamura K., Takeshima H. Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1. J Cell Biol., 154(5), 1059 (2001).