В настоящей статье, на основе теории топологической степени для уплотняющих многозначных отображений, исследуется существование решений для полулинейных дифференциальных включений дробного порядка $2
диффференциальное включение, дробная производная, антипериодическая краевая задача, функция Грина, мера некомпактности, неподвижная точка, уплотняющий мультиоператор
1. GORENFLO, R, KILBAS, A. A, MAINARDI, F. and ROGOSIN, S. V. (2014) Mittag- Leffler Functions, Related Topics and Applications. Berlin-Heidelberg: Springer- Verlag.
2. HILFER, R. (2000) Applications of Fractional Calculus in Physics. Singapore: World Scientific.
3. KILBAS, A. A., SRIVASTAVA, H. M., and TRUJILLO, J. J. (2006) Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier Science B.V., North-Holland Mathematics Studies.
4. PODLUBNY, I. (1999) Fractional Differential Equations. San Diego: Academic Press.
5. TARASOV, V. E. (2010) Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. London, New York: Springer.
6. AFANASOVA, M., LIOU, Y. CH., OBUKHOVSKII, V. and PETROSYAN, G. (2019) On Controllability for a System Governed by a Fractional-order Semilinear Functional Differential Inclusion in a Banach Space. Journal of Nonlinear and Convex Analysis. 20 (9). p. 1919–1935.
7. KAMENSKII, M., OBUKHOVSKII, V., PETROSYAN, G., YAO, J. C. (2017) On Semilinear Fractional Order Differential Inclusions in Banach spaces. Fixed Point Theory. 18 (1). p. 269–292.
8. KAMENSKII, M., OBUKHOVSKII, V., PETROSYAN, G., YAO, J. C. (2019) On a Periodic Boundary Value Problem for a Fractional-Order Semilinear Functional Differential Inclusions in a Banach Space. Mathematics. 7 (12). p. 5–19.
9. KAMENSKII, M., OBUKHOVSKII, V., PETROSYAN, G., YAO, J. C. (2021) On the Existence of a Unique Solution for a Class of Fractional Differential Inclusions in a Hilbert Space. Mathematics. 9 (2). p. 136–154.
10. CHEN, Y., NIETO, J. J., O’REGAN, D. (2007) Antiperiodic Solutions for Fully Nonlinear First-order Differential Equations. Math. Comput. Modelling. 46. p. 1183-–1190.
11. DELVOS, F.J., KNOCHE, L. (1999) Lacunary Interpolation by Antiperiodic Trigonometric Polynomials. BIT. 39. p. 439-–450.
12. SHAO, J. (2008) Anti-periodic Solutions for Shunting Inhibitory Cellular Neural Networks with Time-varying Delays. Phys. Lett. A.. 372. p. 5011-–5016.
13. AHMAD, B., NIETO, J. J. (2010) Existence of Solutions for Anti-periodic Boundary Value Problems Involving Fractional Differential Equations via Leray-Schauder Degree Theory. Topological Methods in Nonlinear Analysis. 35. p. 295-–304.
14. AGARWAL, R. P., AHMAD, B. (2011) Existence Theory for Anti-periodic Boundary Value Problems of Fractional Differential Equations and Inclusions. Computers and Mathematics with Applications. 62. p. 1200-–1214.
15. PETROSYAN, G. (2020) Antiperiodic Boundary Value Problem for a Semilinear Differential Equation of Fractional Order. The Bulletin of Irkutsk State University. series: Mathematics. 34. p. 51–66.
16. KAMENSKII, M., PETROSYAN, G., WEN, C. F (2021) An Existence Result for a Periodic Boundary Value Problem of Fractional Semilinear Differential Equations in a Banach Space. Journal of Nonlinear and Variational Analysis. 5 (1). p. 155–177.
17. KAMENSKII, M., OBUKHOVSKII, V., ZECCA, P. (2001) Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Berlin–New–York: Walter de Gruyter.
18. OBUKHOVSKII, V. V, GELMAN, B. D. (2020) Multivalued Maps and Differential Inclusions. Elements of Theory and Applications. Singapore: World Scientific.
19. BOGDAN, V. M. (2010) Generalized Vectorial Lebesgue and Bochner Integration Theory. arXiv:1006.3881v1 [math.FA].
20. DIESTEL, J., RUESS, W. M., SCHACHERMAVER, W. (1993) On weak compactness in L1(μ, X). Proc. Amer. Math. Soc.. 118. p. 447–453.