ОКИСЛИТЕЛЬНЫЙ СТРЕСС КАК МОЛЕКУЛЯРНАЯ ОСНОВА НЕЙРОДЕГЕНЕРАТИВНЫХ ЗАБОЛЕВАНИЙ И ПУТИ АНТИОКСИДАНТНОЙ ТЕРАПИИ
Аннотация и ключевые слова
Аннотация (русский):
В обзоре представлены результаты клинических и экспериментальных исследований, демонстрирующие патогенетическую роль окислительного стресса в генезе нейродегенеративных заболеваний (НДЗ). Различные по этиологии и клинической симптоматике заболевания нервной системы имеют общие механизмы, связанные с повреждением биомолекул: неправильной укладкой белков, их агрегацией, нарушением про- и антиоксидантного баланса. Усиление образования активных форм кислорода (АФК) индуцирует митоптоз, апоптоз, ферроптоз – факторов, приводящих к нарушению функциональной активности структурных единиц нейрона как главного элемента нервной системы. Несмотря на то, что однозначного признания эффективности антиоксидантной терапии в настоящее время нет, тем не менее, применение антиоксидантов можно рассматривать как важнейшее звено нейропротекции, имеющей патогенетическое обоснование

Ключевые слова:
окислительный стресс, активные формы кислорода, болезнь Паркинсона, болезнь Альцгеймера, аутоиммунные нарушения, ранняя диагностика, антиокидантная терапия
Список литературы

1. Vorobyeva O. V. Oxidative stress associated with cerebrovascular dysfunction: possibilities of therapy, Farmateka, 5, 44 (2010). EDN: https://elibrary.ru/MEHLHD

2. Gomazkov O.A. Cellular and molecular principles of brain aging, Successes of modern biology, 132(2), 141 (2012). EDN: https://elibrary.ru/OXUMDR

3. Duma S. N. The possibilities of antioxidant therapy for asthenia and cognitive deficits in elderly patients with chronic cerebral ischemia, Therapeutic archive, 12, 100 (2013). EDN: https://elibrary.ru/RTKQOX

4. Goncharova Z. A., Kolmakova T. S., Oksenjuk O. S., Morgul E. V., Gelpey M. A., Mutalieva Kh. M., Alpha-synuclein and oxidative stress enzymes as bio-markers of Parkinson's disease, Neurochemistry, 34, 2, 99

5. Mikashinovich Z. I., Telesmanich N. R., Smirnova O. B., Chernogubova E. A. Biomarkers of oxidative stress and proteopathies in the diagnosis of neurodegenerative diseases, Molekular medicine, 2, 16 (2024)

6. Taylor J. P, Jr. Brown H. R., Don Cleveland W., Taylor J. P. Neurodegenerative diseases: G-quadruplex poses quadruple threat, Nature, 507, 175 (2014).

7. Goncharova Z. A., Kolmakova T .S., Oxenyuk O. S., Morgul E. V., Gelpey M. A., Kalmykova Yu. A., Smirnova O. B., Mutalieva H. M. Multi-parametric assessment of biochemical markers of blood in

8. Efimova M. Yu., Ivanova N. E., Alekseeva T. M., Ivanov A. Yu., Tereshin A. E., Makarov A. O., Reshetnik D.A. Molecular biomarkers of cognitive impairment in ischemic stroke. Medical Bulletin of the North

9. Reed T. T. Lipid peroxidation and neurodegenerative disease, Free Radical.Biol. Med. 51, 1302 (2011) doi: 0.1016/j.freeradbiomed.2011.06.02732. DOI: https://doi.org/10.1016/j.freeradbiomed.2011.06.027; EDN: https://elibrary.ru/PMWHRV

10. Miller E., Markiewicz L., Kabzinski J., Odrobina D., Majsterek I., Miller E. et al. Potential of redox therapies in neurodegenerative disorders. Front Biosci (Elite Ed), 1, 9, (2), 214 (2017) doi:https://doi.org/10.2741/e797 EDN: https://elibrary.ru/YYELEH

11. Litvinenko I. V. Fundamental and methodological aspects of the study of progressive diseases of the central nervous system, Bulletin of the National Society for the Study of Parkinson's Disease

12. Domanskyi A., Parlato R., Oxidative Stress in Neurodegenerative Diseases. Antioxidants, 11, 3, 504 (2022). https://doi.org/10.3390/antiox11030504 EDN: https://elibrary.ru/TJJHSV

13. Garcha-Snchez A., Miranda-Dhaz A. G., Cardona-Muuoz E. G. The Role of Oxidative Stress in Physiopathology and Pharmacological Treatment with Pro- and Antioxidant Properties in Chronic

14. Miller E., Walczak A., Saluk J., Ponczek M. B., Majsterek I. Oxidative modification of patient’s plasma proteins and its role in pathogenesis of multiple sclerosis, Clinical Biochemistr, 45, 1-2, 26 (2012).

15. Vilkov G. A., Smirnova O. B., Mezhova L. I. Correction of neuroimmune reactions by regulation of lipid peroxidation. Bulletin of Experimental Biology and Medicine. 116, 10, 364 (1993) (in Russian).

16. Novikov V. E., Levchenkova O. S., Pozhilova Ye. V., Senerzhova E. V. The role of reactive oxygen species in cell physiology and pathology and their pharmacological regulation, Reviews on clinical

17. Steinert, J. R., Chernova T., Forsythe I. D. Nitric oxide signaling in brain function, dysfunction, and dementia, Neuroscientist, 16, 435 (2010). doi:https://doi.org/10.1177/1073858410366481 EDN: https://elibrary.ru/YBOTTH

18. Sidorova Y., Domanskyi A. Detecting Oxidative Stress Biomarkers in Neurodegenerative Disease Models and Patients, Methods Protoc, 3, 4, 66 (2020) doi:https://doi.org/10.3390/mps3040066 EDN: https://elibrary.ru/ZPUHNH

19. Roberts R. A., Laskin D. L., Smith C. V., Robertson F. M., Allen E. M., Doorn J. A., Slikker W. Roberts R. A. Nitrative and oxidative stress in toxicology and disease, Toxicological sciences, 112, 1, 4

20. Garcha-Spnchez A., Miranda-Dhaz A. G., Cardona-Mupoz E. G. The Role of Oxidative Stress in Physiopathology and Pharmacological Treatment with Pro- and Antioxidant Properties in Chronic

21. Gomazkov O. A. Cellular and molecular principles of brain aging, Uspekhi sovremennoi biologii, 132, 2, 141 (2012) (In Russ.).

22. Kirova Yu. I., Shakova F. M., Germanova E. L., Romanova G. A., Voronina T. A. The effect of Mexidol on cerebral mitochondriogenesis at a young age and during aging, S. S. Korsakov Journal of Neurology

23. Levin O. S., Bogolepova A. N. Cognitive rehabilitation of patients with neurodegenerative diseases, Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova, 120, 5, 110 (2020). DOI: https://doi.org/10.17116/jnevro2020120051110; EDN: https://elibrary.ru/TGXNRF

24. Janssens J., Kleinberger G., Wils H., Van Broeckhoven C., The role of mutant TAR DNA-binding protein 43 in amyotrophic lateral sclerosis and frontotemporal lobar degeneration, Biochem Soc Trans, 39, 4, 954.

25. Ivonina N. A., Petrov K. B. The use of neurotropic therapy in young patients with postcovid syndrome, S. S. Korsakov Journal of Neurology and Psychiatry, 122, 3, 126 (2022). DOI: https://doi.org/10.17116/jnevro2022122031126; EDN: https://elibrary.ru/ZJGMRY

26. Uddin M. S., Tewari D., Sharma G., Kabir M. T., Barreto G. E., Bin-Jumah M. N., Perveen A., Abdel-Daim M. M., Ashraf G. M. Molecular Mechanisms of ER Stress and UPR in the Pathogenesis

27. Mondragyn-Rodrhguez S., Perry G., Zhu X., Boehm J. Amyloid beta and tau proteins as therapeutic targets for Alzheimer’s disease treatment: rethinking the current strategy, International Journal of

28. Ellis G., Fang E., Maheshwari M., Roltsch E., Holcomb L., Zimmer D., Martinez D., Murray I. V., Lipid oxidation and modification of amyloid-β (Aβ) in vitro and in vivo, Journal of Alzheimer’s Disease, 22, 2, 593

29. Savelieff M. G., Lee S., Liu Y., Lim M. H. Untangling amyloid-β, tau, and metals in Alzheimer's disease, ACS Chemical Biology, 8, 856 (2013).

30. Abramov A. Y., Berezhnov A. V., Fedotova E. I., Zinchenko V. P., Dolgacheva L. P. Interaction of misfolded proteins and mitochondria in neurodegenerative disorders, Biochemical Society Transactions,

31. Goncharova Z. A., Kolmakova T. S., Oksenyuk O. S., Morgul E. V., Gelpey M. A., Vlasova N. D., Smirnova O. B., Mutalieva H. M., Possible laboratory and instrumental markers of Parkinson’s disease

32. Gros-Louis F., Gaspar C., Rouleau G. A. Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochim. Biophys. Acta, 1762, 956 (2006).

33. Hardiman O., Al-Chalabi A., Chio A., Corr E. M., Logroscino G., Robberecht W., Shaw P. J. Simmons Z., van den Berg L. H. Amyotrophic lateral sclerosis., Nat. Rev. Dis. Prim., 3, 1707 (2017).

34. Taylor J. P., Brown R. H. J., Cleveland D. W., Decoding ALS: From genes to mechanism, Nature, 539, 197 (2016). DOI:https://doi.org/10.1038/nature20413 EDN: https://elibrary.ru/YXCKVJ

35. Rakhit R., Crow J. P., Lepock J. R., Kondejewsk L. H., Cashman N. R., Chakrabartty A., Monomeric Cu,Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial

36. Blasco H., Garcon G., Patin F., Veyrat-Durebex C., Boyer J., Devos D., Vourc’h P., Andres C. R., Corcia P. Panel of Oxidative Stress and Inflammatory Biomarkers in ALS: A Pilot Study, Can. J. Neurol.

37. Rosen D. R., Siddique T., Patterson D., Figlewicz D. A., Sapp P., Hentati A., Donaldson D., Goto J., O’Regan J. P., Deng H. X., Mutations in Cu/Zn superoxide dismutase gene are associated with familial

38. Zou Z., Zhou Z., Che C., Liu C., He R., Genetic epidemiology of amyotrophic lateral sclerosis: A systematic review and meta-analysis, J. Neurol. Neurosurg. Psychiatry., 88, 540, 193 (2017).

39. Guareschi S., Cova E., Cereda C., Ceroni M., Donetti E., Bosco D. A., Trotti D., Pasinelli P., An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a

40. Saccon R. A., Bunton-Stasyshyn R. K. A., Fisher E. M. C., Fratta P. Is SOD1 loss of function involved in amyotrophic lateral sclerosis, Brain, 136, 2342 (2013). DOI:https://doi.org/10.1093/brain/awt097

41. Forsberg K., Andersen P. M., Marklund S. L, Brnnstrm T. Glial nuclear aggregates of superoxide dismutase-1 are regularly present in patients with amyotrophic lateral sclerosis, Acta Neuropathol., 121,

42. Petrovic S., Medic D., Cvetkovic Z., Arsic A., Vucic V., Lipid Peroxidation and Antioxidant Supplementation in Neurodegenerative Diseases: A, Review of Human Studies. Antioxidants (Basel), 9, 11, 1128

43. Shchulkin A. V. A modern concept of antihypoxic and antioxidant effects of mexidol, S. S. Korsakov Journal of Neurology and Psychiatry, 118, 12-2, 87 (2018). (In Russ.) DOI: https://doi.org/10.17116/jnevro201811812287; EDN: https://elibrary.ru/PPTGEP

44. Wang M., Liu Z., Sun W., Yuan Y., Jiao B., Zhang X., Shen L., Jiang H., Xia K., Tang B. Association Between Vitamins and Amyotrophic Lateral Sclerosis: A Center-Based Survey in Mainland China. Front. Neurol.,

45. Katasonov A. B., Anthocyanins for the prevention and treatment of neurodegenerative diseases, S. S. Korsakov Journal of Neurology and Psychiatry, 122, 4, 16 (2022) (In Russ.) DOI: https://doi.org/10.17116/jnevro202212204116; EDN: https://elibrary.ru/UNYNGI

46. Chukanova E. I., Chukanova A. S., Mamayeva Kh. I. The results of the study of the efficacy and safety of mexidol in patients with chronic cerebral ischemia, S. S. Korsakov Journal of Neurology and Psychiatry,

47. Stakhovskaya L. V., Shamalov N. A., Khasanova D. R., Mel’nikova E. V., Agafiina A. S., Golikov K. V., Bogdanov U I., Yakupova A. A., Roshkovskaya L. V., Lukinykh L. V., Lokshtanova T. M.,

48. Voronina T. A. Geroprotective effects of ethylmethylhydroxypyridine succinate in an experimental study. S. S. Korsakov Journal of Neurology and Psychiatry, 120, 4, 81 (2020) (In Russ.) DOI: https://doi.org/10.17116/jnevro202012004181; EDN: https://elibrary.ru/XJLWDR

49. Fedin A. I., Zakharov V. V., Tanashyan M. M., Chukanova E. I., Madzhidova E. N., Shchepankevich L. A., Ostroumova O. D. Results of an international multicenter, randomized, double-blind, placebo-

50. Levin O. S., Diagnosis and treatment of cognitive impairment and dementia in clinical practice, MEDpress-inform, 2021 (ICBN:978-5-907632-94-3).

51. Karpov S. M., Morozova M. Yu., Muravyov K. A., Vyshlova I. A., Kantemirova F. S. Study of the efficacy and safety of sequential use of the drugs Mexidol and Mexidol FORTE 250 in the treatment of

52. Zakharov V. V., Tkacheva O. N., Mkhitaryan E. A., Fedin A. I. Efficacy of Mexidol in patients with chronic brain ischemia and cognitive impairment of different age groups (results of sub-analysis of the

53. Antipenko E. A., Shulyndin A. V., Belyakov K. M., Neurometabolic therapy of mild cognitive impairment in patients with chronic cerebral ischemia, S. S. Korsakov Journal of Neurology and Psychiatry,

54. Shchepankevich L. A., Nikolaev Yu. A., Taneeva E. V., Pervuninskaya M. A., Shchepankevich M. S., The efficacy and safety study of Mexidol and Mexidol FORTE 250 in patients with chronic cerebral

55. Kirova Yu. I., Shakova F. M., Germanova E. L., Romanova G. A., Voronina T. A. The effect of Mexidol on cerebral mitochondriogenesis at a young age and aging, Zhurnal nevrologii i psikhiatrii im

56. Zhuravleva M. V., Shchukin I. A., Fidler M. S., Prokofiev A. B., Serebrova S. Yu., Vasyukova N. S., Demchenkova E. Yu., Arkhipov V. V. Efficacy and safety of ethylmethylhydroxypyridine succinate in patients with

57. Steinbrenner H., and Sies H. Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervoussystem, Arch. Biochem. Biophys. 536, 152 (2013). DOI: https://doi.org/10.1016/j.abb.2013.02.021; EDN: https://elibrary.ru/RGVSHZ

58. Hanan S., El-Abhar Hanan M., Abd-El Gawad, Dalaal M., Abdallah and Hanan S., El-Abhar, Rotenone-induced Parkinson`s Like Disease: Modulating Role of Coenzyme Q10. Journal of Biological Sciences, 4, 8,

59. Ghasemloo E., Mostafavi H., Hosseini M., Forouzandeh M., Eskandari M., and Mousavi S. S., Neuroprotective effects of coenzyme Q10 in Parkinson’s model via a novel Q10/miR-149-5p/MMPs

60. Javier F., Jimnez J. Coenzyme Q10 and Parkinsonian Syndromes: A Systematic Review, Journal of Personalized Medicine, 12, 6, 975 (2022). doi:https://doi.org/10.3390/jpm12060975 EDN: https://elibrary.ru/NETQUI

61. Sandro Huenchuguala, Juan Segura-Aguilar, Targets to Search for New Pharmacological Treatment in Idiopathic Parkinson’s Disease According to the Single-Neuron Degeneration Model, Biomolecules, 14, 6,

62. Yubero-Serrano Elena M., Francisco M. Gutierrez-Mariscal, Antonio Garcia-Rios, Javier Delgado-Lista, Pablo Purez-Martinez, Antonio Camargo, Francisco Perez-Jimenez, Jose Lopez-Miranda, Coenzyme Q10

63. Genova M.., Pich M. M., Biondi A., Bernacchia A., Falasca A., Bovina C., Formiggini G. Parenti, Castelli G., Lenaz G., Mitochondrial Production of Oxygen Radical Species and the Role of Coenzyme Q as an

64. Di Pierro D., Ciaccio C., Sbardella D., Tundo G. R., Bernardini R., Curatolo P., Cinzia G., Coletta M., Marini S. Effects of oral administration of common antioxidant supplements on the energy metabolism of red

Войти или Создать
* Забыли пароль?