Анкилозирующий спондилит вызывает морфологическое или функциональное поражение сердечно-сосудистой системы в 22% случаях. Применение современных методов исследования функции сердца, таких как холтеровское мониторирование ЭКГ, позволяется выявлять нарушения ритма и проводимости, синдром удлиненного интервала QT. Изменение параметров интервала QT, таких как его продолжительность и дисперсия, можно рассматривать как предиктор развития кардиоваскулярных катастроф, фатальных аритмий. В статье проведен анализ величин QT/RR и QTc при проведении Холтеровского мониторирования ЭКГ у 92 пациентов с диагнозом Анкилозирующий спондилит в зависимости от стадии заболевания, активности патологического процесса, серопозитивности по HLA B27. Установлено достоверное увеличение QT/RR и QTс за активный и пассивный периоды проведения Холтеровского мониторирования ЭКГ в сравнении с группой контроля. У пациентов с анкилозирующим спондилитом выявлены желудочковые нарушения ритма, которые взаимосвязаны с удлинением интервала QT. Стандартизированное проведение у больных с АС Холтеровского мониторирования ЭКГ, с учетом суточной дисперсии интервала QT может стать универсальным, малоинвазивным и низкозатратным методом оценки риска развития кардиоваскулярных нарушений у пациентов с Анкилозирующим спондилитом.
анкилозирующий спондилит, интервал QT, Холтеровское мониторирование ЭКГ
1. Arroyave F., Montaсo D., Lizcano F. Diabetes Mellitus Is a Chronic Disease that Can Benefit from Therapy with Induced Pluripotent Stem Cells. 2020;21(22):8685. doi:https://doi.org/10.3390/ijms21228685.
2. Avilйs-Santa M.L., Monroig-Rivera A., Soto- Soto A., Lindberg N.M. Current State of Diabetes Mellitus Prevalence, Awareness, Treatment, and Control in Latin America: Challenges and Innovative Solutions to Improve Health Outcomes Across theContinent.CurrDiab Rep. 2020;20(11):62. doi:10.1007/ s11892-020-01341-9.
3. Zhao R., Lu Z., Yang J., Zhang L., Li Y., Zhang X. Drug Delivery System in the Treatment of Diabetes Mellitus. Front BioengBiotechnol. 2020;8:880. doi:https://doi.org/10.3389/fbioe.2020.00880.
4. Saeedi P., Petersohn I., Salpea P., Malanda B., Karuranga S., Unwin N., Colagiuri S., Guariguata L., Motala A.A., Ogurtsova K., Shaw JE, Bright D., Williams R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019;157:107843. doihttps://doi.org/10.1016/j.diabres.2019.107843
5. Infante-Garcia C., Garcia-Alloza M. Review of the Effect of Natural Compounds and Extracts on Neurodegeneration in Animal Models of Diabetes Mellitus. Int J Mol Sci. 2019;20(10):2533. doi:10.3390/ ijms20102533.
6. Forouhi N.G., Wareham N.J. Epidemiology of diabetes. Medicine. 2014;42:698-702. doi: https://doi.org/10.1016/j. mpmed.2014.09.007.
7. Pati S., van den Akker M., Schellevis F.G., Jena S., Burgers J.S. Impact of comorbidity on health- related quality of life among type 2 diabetic patients in primary care. Prim Health Care Res Dev. 2020;21:e9. doihttps://doi.org/10.1017/S1463423620000055
8. Graves L.E., Donaghue K.C. Vascular Complication in Adolescents With Diabetes Mellitus. 2020;11:370. doi:https://doi.org/10.3389/fendo.2020.00370.
9. Shukla V., Shakya A.K., Perez-Pinzon M.A., Dave K.R. Cerebral ischemic damage in diabetes: an inflammatory perspective. J Neuroinflammation. 2017;14:21. doihttps://doi.org/10.1186/s12974-016-0774-5
10. Rozanska O., Uruska A., Zozulinska- Ziolkiewicz D. Brain-Derived Neurotrophic Factor and Diabetes. Int J Mol Sci. 2020;21(3):841. doi: 10.3390/ ijms21030841.
11. Seaquist E.R. The Impact of Diabetes on Cerebral Structure and Function. Psychosom Me d . 2 01 5 ;7 7( 6) :6 16 -21. do i:10 .1097 / PSY.0000000000000207.
12. Ferris J.K., Inglis J.T., Madden K.M., Boyd L.A. Brain and Body: A Review of Central Nervous System Contributions to Movement Impairments in Diabetes. Diabetes. 2020;69(1):3-11. doihttps://doi.org/10.2337/db19- 0321.
13. Peng H., Luo P., Li Y., Wang C., Liu X., Ye Z., Li C., Lou T. Simvastatin alleviates hyperpermeability of glomerular endothelial cells in early-stage diabetic nephropathy by inhibition of RhoA/ROCK1. PLoS One. 2013;8:e80009. doi:https://doi.org/10.1371/journal.pone.0080009.
14. Prasad S., Sajja R.K., Naik P., Cucullo L. Diabetes Mellitus and Blood-Brain Barrier Dysfunction: An Overview. J Pharmacovigil. 2014;2:125. doihttps://doi.org/10.4172/2329-6887.1000125.
15. Domingueti C.P., Dusse L.M., Carvalho M., de Sousa L.P., Gomes K.B., Fernandes A.P. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J. Diabetes Complicat. 2016;30:738-745. doi:https://doi.org/10.1016/j.jdiacomp.2015.12.018.
16. Rehni A.K., Dave K.R. Impact of Hypoglycemia on Brain Metabolism During Diabetes. MolNeurobiol. 2018;55(12):9075-9088. doi:10.1007/ s12035-018-1044-6.
17. Pugazhenthi S., Qin L., Reddy P.H. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 2017;1863(5):1037-1045. doihttps://doi.org/10.1016/j. bbadis.2016.04.017.
18. Fendler W., Borowiec M., Baranowska- Jazwiecka A., Szadkowska A., Skala-Zamorowska E., Deja G., Jarosz-Chobot P., Techmanska I., Bautembach- Minkowska J., Mysliwiec M., Zmyslowska A., Pietrzak I., Malecki M.T., Mlynarski W. Prevalence of monogenic diabetes amongst Polish children after a nationwide genetic screening campaign. Diabetologia. 2012;55(10):2631-2635. doi: https://doi.org/10.1007/s00125-012- 2621-2.
19. Temneanu O.R., Trandafir L.M., Purcarea MR. Type 2 diabetes mellitus in children and adolescents: a relatively new clinical problem within pediatric practice. J Med Life. 2016;9(3):235-239.
20. Santi E., Tascini G., Toni G., Berioli M.G., Esposito S. Linear Growth in Children and Adolescents with Type 1 Diabetes Mellitus. Int J Environ Res Public Health. 2019;16(19):3677. doi:https://doi.org/10.3390/ijerph16193677.
21. Rapini N., Schiaffini R., Fierabracci A. Immunotherapy Strategies for the Prevention and Treatment of Distinct Stages of Type 1 Diabetes: An Overview. Int J Mol Sci. 2020;21(6):2103. doi: 10.3390/ ijms21062103.
22. Батурин В.А., Быков Ю.В., Мамцева Г.И., Углова Т.А. Сравнительный анализ уровня анти- тел к инсулиновым рецепторам у детей с сахарным диабетом I типа в зависимости от стадии заболевания. Медицинский Вестник Северного Кавказа. 2016;11:(1);80-82. doihttps://doi.org/10.14300/mnnc.2016.11003
23. Быков Ю.В., Батурин В.А., Углова Т.А. Оценка уровней аутоантител к NMDA и дофа- миновым рецепторам у детей больных сахарным диабетом I типа в зависимости от тяжести течения заболевания. Медицина 2020;8(2):73-80. doihttps://doi.org/10.29234/2308-9113-2020-8-2-73-80
24. Engin F. ER stress and development of type 1 diabetes. J Investig Med. 2016;64(1):2-6. doi: 10.1097/ JIM.0000000000000229.
25. Szmygel L., Kosiak W., Zorena K., Myśliwiec M. Optic Nerve and Cerebral Edema in the Course of Diabetic Ketoacidosis. CurrNeuropharmacol. 2016;14(8):784-791. doi: https://doi.org/10.2174/1570159x146661602 25155151.
26. Wolfsdorf J.I., Allgrove J., Craig M.E., Edge J., Glaser N., Jain V., Lee W.W., Mungai L.N., Rosenbloom A.L., Sperling M.A., Hanas R.A. Chapter 11: Diabetic ketoacidosis and hyper- glycemic hypersmolar state ISPAD Clinical Practice Consensus Guidelines 2014. Pediatr. Diabetes. 2014;15(Suppl. 20):154-179. doihttps://doi.org/10.1111/pedi.12165.
27. Assefa B., Zeleke H., Murugan R., Wondwossen K. Incidence and predictors of diabetic ketoacidosis among children with diabetes in west and east Gojjam zone referral hospitals, northern Ethiopia, 2019. Ital J Pediatr. 2020;46(1):164. doi:10.1186/ s13052-020-00930-4.
28. Pourabbasi A., Tehrani-Doost M., Qavam S.E., Arzaghi S.M., Larijani B. Association of diabetes mellitus and structural changes in the central nervous system in children and adolescents: a systematic review. J Diabetes MetabDisord. 2017;16:10. doi: 10.1186/ s40200-017-0292-8.
29. Pourabbasi A ., Tehrani-Doost M., Qavam S.E., Larijani B. Evaluation of the correlation between type 1 diabetes and cognitive function in children and adolescents, and comparison of this correlation with structural changes in the central nervous system: a study protocol. BMJ Open. 2016;6(4):e007917. doihttps://doi.org/10.1136/bmjopen-2015-007917.
30. Ryan C.M., van Duinkerken E., Rosano C. Neurocognitive consequences of diabetes. Am Psychol. 2016;71(7):563-576. doihttps://doi.org/10.1037/a0040455.
31. Semenkovich K., Bischoff A., Doty T., Nelson S., Siller A.F., Hershey T., Arbelбez A.M. Clinical presentation and memory function in youth with type 1 diabetes. Pediatr Diabetes 2016;17:492-499. doihttps://doi.org/10.1111/pedi.12314.
32. Aye T., Mazaika P.K., Mauras N., Marzelli M.J., Shen H., Hershey T., Cato A., Weinzimer S.A., White N.H., Tsalikian E., Jo B., Reiss A. Impact of Early Diabetic Ketoacidosis on the Developing Brain. Diabetes Care. 2019;42(3):443-449. doihttps://doi.org/10.2337/dc18- 1405.
33. Biessels G.J., Despa F. Cognitive decline and dementia in diabetes: mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591- 604. doihttps://doi.org/10.1038/s41574-018-0048-7
34. Qian J., Scheer FA. Circadian System and Glucose Metabolism: Implications for Physiology and Disease. Trends EndocrinolMetab. 2016;27(5):282-293. doi:https://doi.org/10.1016/j.tem.2016.03.005